THERMODYNAMIC FORMALISM FOR SUBSYSTEMS OF EXPANDING
THURSTON MAPS AND LARGE DEVIATIONS ASYMPTOTICS

ZHIQIANG LI, XIANGHUI SHI, AND YIWEI ZHANG

ABSTRACT. Expanding Thurston maps were introduced by M. Bonk and D. Meyer with motiva-
tion from complex dynamics and Cannon’s conjecture from geometric group theory via Sullivan’s
dictionary. In this paper, we introduce subsystems of expanding Thurston maps motivated via
Sullivan’s dictionary as analogs of some subgroups of Kleinian groups. We use thermodynamic
formalism to prove the Variational Principle and the existence of equilibrium states for strongly
irreducible subsystems and real-valued Hélder continuous potentials. Here, the sphere S? is
equipped with a natural metric, called a visual metric, introduced by M. Bonk and D. Meyer. As
an application, we establish large deviation asymptotics for expanding Thurston maps.
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1. INTRODUCTION

A Thurston map is a (non-homeomorphic) branched covering map on a topological 2-sphere
S? that is postcritically-finite, meaning that each of its critical points has a finite orbit under
iteration. The most important examples are given by postcritically-finite rational maps on the
Riemann sphere C. While Thurston maps are purely topological objects, a deep theorem due
to W.P. Thurston characterizes Thurston maps that are, in a suitable sense, described in the
language of topology and combinatorics, equivalent to postcritically-finite rational maps (see
[DH93]). This suggests that for the relevant rational maps, an explicit analytic expression is not
so important but rather a geometric-combinatorial description. This viewpoint is both natural
and fruitful for considering more general dynamical systems that are not necessarily conformal.

In the early 1980s, D.P. Sullivan introduced a “dictionary” that is now known as Sullivan’s
dictionary, which connects two branches of conformal dynamics: iterations of rational maps, and
actions of Kleinian groups. Under Sullivan’s dictionary, the counterpart to Thurston’s theorem in
geometric group theory is Cannon’s Conjecture [Can94]. An equivalent formulation of Cannon’s
conjecture, viewed from a quasisymmetric uniformization perspective ([Bon06, Conjecture 5.2]),
predicts that if the boundary at infinity 0,,G of a Gromov hyperbolic group G is homeomorphic
to 52, then 0-.G equipped with a visual metric is quasisymmetrically equivalent to the Riemann
sphere C equipped with the chordal metric.

Inspired by Sullivan’s dictionary and their interest in Cannon’s conjecture, M. Bonk and
D. Meyer [BM10, BM17], as well as P. Haissinsky and K.M. Pilgrim [HP0Y], studied a sub-
class of Thurston maps, called expanding Thurston maps, by imposing some additional condition
of expansion. These maps are characterized by a contraction property for inverse images (see
Subsection @ for the precise definition). In particular, a postcritically-finite rational map on C
is expanding if and only if its Julia set is equal to C. For an expanding Thurston map on S?,
we can equip S? with a natural class of metrics d, called wisual metrics (see Subsection E for
details), that are snowflake equivalent to each other and are constructed in a similar way as the
visual metrics on_the boundary do,G of a Gromov hyperbolic group G (see [BM17, Chapter 8] for
details, and see [HP09] for a related construction). In the language above, the following theorem
was obtained in [BM10, BM17, HP09], which can be seen as an analog of Cannon’s conjecture
for expanding Thurston maps.

Theorem (M. Bonk & D. Meyer [BM10, BM17]; P. Haissinky & K.M. Pilgrim [HP09]). Let
f: 8% — S? be an expanding Thurston map with no periodic critical points and d be a visual
metric for f. Then f is topologically conjugate to a rational map if and only if (S2,d) is
quasisymmetrically equivalent to C.

The dynamical systems that we study in this paper are called subsystems of expanding Thurston
maps, inspired by a translation of the notion of subgroups from geometric group theory via
Sullivan’s dictionary. To clarify this concept, we consider an expanding Thurston map f: S% — 5?2
and a Jordan curve C C S? that contains the postcritical set post f. The condition post f C C
ensures that the closure of each connected component of 52\ f~"(C) is a closed Jordan region. We
call each such set an n-tile. Consider some 1-tiles and denote their union by U. The restriction
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F = f|y is called a subsystem of f with respect to C, and the dynamics of F: U — S? generates
the tile mazimal invariant set Q C S2. which is the intersection of unions of n-tiles contained in
F~7(8?) for n € N (see Subsection E] for a detailed discussion).

For expanding Thurston maps, roughly speaking, 1-tiles together with the maps restricted to
those tiles play a role similar to that of generators in the context of Gromov hyperbolic groups.
For example, one can recover S? and the original map f from all its 1-tiles and the dynamics
on those tiles. If we consider all n-tiles for some n € N, we obtain an iterate f™ of f, which
corresponds to a finite-index subgroup of the original group in the group setting. Given such
similarity, it is natural to investigate more general cases, such as dynamics generated by certain
1-tiles, which leads to our study of subsystems. We remark that although the concept of a
subsystem shares certain similarities with the notion of a repeller (see [Pes97, PU10]), the latter
typically requires smooth and uniformly expanding assumptions, neither of which are satisfied by
a subsystem.

According to Sullivan’s dictionary, an expanding Thurston map is associated with a Gromov
hyperbolic group whose boundary at infinity is S?. In this context, a subsystem corresponds to a
Gromov hyperbolic group whose boundary at infinity is a subset of $2. In particular, for Gromov
hyperbolic groups whose boundary at infinity is a Sierpinski carpet, there is an analog of Cannon’s
conjecture—the Kapovich—Kleiner conjecture. It predicts that these groups arise from some
standard situation in hyperbolic geometry. Similar to Cannon’s conjecture, one can reformulate
the Kapovich—Kleiner conjecture in an equivalent way as a question related to quasisymmetric
uniformization. For subsystems, it is easy to find examples where the tile maximal invariant set is
homeomorphic to the standard Sierpinski carpet (see Subsection for examples of subsystems).
In this case, an analog of the Kapovich—Kleiner conjecture for subsystems is under investigation
[BLL].

In this paper, we delve into the dynamics of subsystems of expanding Thurston maps from the
perspective of ergodic theory. Ergodic theory has played a crucial role in the study of dynamical
systems. The investigation of invariant measures has been a central part of ergodic theory.
However, a dynamical system may possess a large class of invariant measures, some of which
may be more interesting than others. It is, therefore, crucial to examine the relevant invariant
measures.

The thermodynamic formalism serves as a viable mechanism for generating invariant measures
endowed with desirable properties. More precisely, for a continuous transformation on a com-
pact metric space, we can consider the topological pressure as a weighted version of the topological
entropy, with the weight induced by a real-valued continuous function, called potential. The Vari-
ational Principle identifies the topological pressure with the supremum of its measure-theoretic
counterpart, the measure-theoretic pressure, over all invariant Borel probability measures [Bow75,
Wal82]. Under additional regularity assumptions on the transformation and the potential, one
gets the existence and uniqueness of an invariant Borel probability measure maximizing the
measure-theoretic pressure, called the equilibrium state for the given transformation and the po-
tential. The study of the existence and uniqueness of the equilibrium states and their various
other properties, such as ergodic properties, equidistribution, fractal dimensions, etc., has been
the primary motivation for much research in the area.

The ergodic theory for expanding Thurston maps has been investigated in [Lil7] by the first-
named author of the current paper. In [Lilg], the first-named author developed the thermody-
namic formalism and investigated the existence, uniqueness, and other properties of equilibrium
states for expanding Thurston maps. In particular, for expanding Thurston maps without peri-
odic critical points, using a general framework devised by Y. Kifer [Kif90], the first-named author
established level-2 large deviation principles for iterated preimages and periodic points in [Lil5].
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The current paper is the first in a series of two papers (along with [LS24b]) investigating
the ergodic theory of subsystems of expanding Thurston maps. In this paper, we develop the
thermodynamic formalism for strongly irreducible subsystems of expanding Thurston maps. For
these subsystems, we establish the Variational Principle and the existence of equilibrium states.
Consequently, we derive large deviation asymptotics for (original) expanding Thurston maps.

In the second paper [LS24b] in this series, we establish the uniqueness and ergodic properties
of equilibrium states for strongly primitive subsystems of expanding Thurston maps. Building
on the results regarding existence and uniqueness of equilibrium states, for strongly primitive
subsystems of expanding Thurston maps without periodic critical points, we obtain level-2 large
deviation principles for the distributions of Birkhoff averages and iterated preimages.

Our investigation of subsystems in this series also has applications in the ergodic properties and
large deviation theories of expanding Thurston maps. In [LS24a], for any expanding Thurston
map, even in the presence of periodic critical points, we prove, by using subsystems, the entropy
density of ergodic measures and establish level-2 large deviation principles for the distributions of
Birkhoff averages, periodic points, and iterated preimages, which generalizes the corresponding
results in [Lil5]. Additionally, by constructing suitable subsystems, we show that the entropy map
of an expanding Thurston map f is upper semi-continuous if and only if f has no periodic critical
points. This finding provides a negative answer to the question posed in [Lil5] and indicates
that the method used there to prove large deviation principles is not applicable to expanding
Thurston maps with periodic critical points. In this context, subsystems serve as practical tools
for studying expanding Thurston maps. We expect more applications of subsystems in the future.

1.1. Main results. Our main results consist of two parts. We first establish the Variational
Principle and the existence of equilibrium states for subsystems of expanding Thurston maps.
Then as an application, we obtain large deviation asymptotics for expanding Thurston maps.
In particular, these results apply to postcritically-finite rational maps without periodic critical
points.

Variational Principle and the existence of equilibrium states. In order to present our results more
precisely, we briefly review some key concepts. We refer the reader to Section B for a detailed
discussion.

Let f: S? — S? be an expanding Thurston map with a Jordan curve C C S? satisfying
post f C C. Here post f := U,en{/"(c) : ¢ € S? is a critical point of f}. For each n € Ny, the
set of n-tiles is

X™(f,C) == {X™: X" is the closure of a connected component of %\ f~"(C)}.

We say that a map F': dom(F) — S2 is a subsystem of f with respect to C if dom(F) = |J X%
for some non-empty subset X C X!(f,C) and F = fldom(r)- We denote by Sub(f,C) the set of
subsystems of f with respect to C.

Consider a subsystem F' € Sub(f,C). For each n € Ny, we define the set of n-tiles of F' to be

X"(F,C) = {X" € X"(f,€) : X" C F"(F(dom(F)))},

where we set F¥ :=idg2 when n = 0. We call each X" € X"(F,C) an n-tile of F. We define the
tile maximal invariant set associated with F' with respect to C to be

Q=q(FCc) =) (U %”(F,C)).
neN

We note that @ C S? is compact and is forward invariant under F, i.e., F(Q) C Q (see
Proposition ) Hence, we can consider the restriction F|g: Q — 2 and its iterates. In
this context, we denote by M(2, F|q) the set of F|g-invariant Borel probability measures on (2,
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and by h,(F|q) the measure-theoretic entropy of F|q for € M(§, Flq) (see Subsection @ for
precise definitions).
We define the topological pressure of a subsystem F with respect to a potential ¢ € C(S?) by

1

n—+o0o N

where

Zn(Fop) = Y exp<sup{§¢(Fi(x)):xeX”}).

Xnexn(FC)

Observe the difference between P(F, ¢) and the classical notion of topological pressure P(F|q, ¢|q)
for the map Flg: Q — Q (see the remark after Definition for details).

In the following theorem, under the additional assumption that the Jordan curve C is forward
invariant, we establish the Variational Principle and the existence of the equilibrium state for
a strongly irreducible subsystem (see Definition p.15) and a Holder continuous potential with
respect to a visual metric.

Theorem 1.1. Let f: S? — S? be an expanding Thurston map and C C S? be a Jordan curve
containing post f with the property that f(C) C C. Let d be a visual metric on S for f and ¢ be
a real-valued Holder continuous function on S? with respect to the metric d. Consider a strongly
irreducible subsystem F € Sub(f,C) and denote its tile mazximal invariant set by . Then

(1) P(F6) =sww{ hu(Flo) + [ odu: e Mis Flo) .

Moreover, there exists an equilibrium state pp 4 for Flo and ¢|q attaining the supremum in (EI)

Remark. When the subsystem F' is strongly primitive (see Definition ), we prove the unique-
ness and various ergodic properties of the equilibrium state pp 4, including mixing. We also show
that the preimages are equidistributed with respect to ppe. As these proofs employ new tech-
niques beyond the scope of this paper, we present these results in the companion paper [LS24b)|
to enhance accessibility of the current paper for a broader audience who are, for independent
reasons, potentially interested in the basic notions of subsystems introduced in this paper.

Large deviation asymptotics. Our second result is about the large deviations asymptotics for
expanding Thurston maps. Applying Theorem [l.1, we provide exponential upper bounds for
deviations.

Large deviation theory first arose in probability and usually studies the asymptotic behavior
of the probability ]P’{% Yor1 Xn € I} as n — +oo for a sequence { X, },en of real-valued random
valuables and an interval I C R. If a law of large numbers holds, such that % Yoy X — X as
n — 400 and X ¢ I, then the above probabilities tend to zero. In some cases, it is possible to
demonstrate that the convergence is exponentially fast, which brings large deviation theory into
play, with its primary goal being to describe the corresponding exponent.

In order to state the result more precisely, we briefly review some key concepts.

For an expanding Thurston map f: S?> — S? and a Hélder continuous function ¢: S? — R
(with respect to a given visual metric for f on S?), there exists a unique equilibrium state fg for
f and ¢ (see Theorem ) Two real-valued functions ¢, 1) € C(S?) are called co-homologous
in C(S?) (with respect to f) if there exists a function u € C(S?) such that ¢ — ¢ = uo f — u.
In the following, we assume that ¢: S? — R is Hélder continuous (with respect to a given visual
metric for f on $?) and is not co-homologous to a constant in C(S?).
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We write Zy = [@min, max], Where
1.2 Qin ‘= Mmin d and  opax '= ~ max d
12) T pem(s2.p) / pdu T pem(s? g / Pdp

Here M(S?, f) is the set of f-invariant Borel probability measures on S?, which is convex and
compact with respect to the weak* topology. In particular, we have int(Z,) # 0 and [ ¢dpus €
(Qtmin, Omax) (see Proposition i)).

We define a rate function I = I g: [otmin, max] — [0, +00) for f and ¢ by

L3) ()= Iy(a) = inf{P<f, 0= Pulf.): [odu=a, weMs? f)},

where P(f,¢) is the topological pressure of f with respect to ¢ and P,(f,¢) is the measure-
theoretic pressure of f for u and ¢ (see Subsection for definitions).
Now we are able to state our second result.

Theorem 1.2 (Large deviations asymptotics). Let f: S? — S? be an expanding Thurston map
and d be a visual metric on S? for f. Let ¢ be a real-valued Hélder continuous function on S?
(with respect to the metric d) that is not co-homologous to a constant in C(S?). Let ugy be the
unique equilibrium state for the map f and the potential ¢. Denote vy = [¢duy. Then for each
a € (Qmin, Omax), there exists an integer N € N and a real number Cy > 0 such that for each
integer n > N,

uqs({x € 5% :sgn(a — %) Sno(x) > sgn(a —%)a}) < CpeHem,

where Sp¢(x) = Z?:_ol (fi(2)), amin and amax are defined by (@), and I(«) is defined by (@)

For the rate function, I(c) = 0 holds if and only if a = 7, (see Proposition EI ) Hence.
gives control on exponential rates of the convergence. Moreover, it follows from Proposition H
and [DPTUZ21, Theorems 1.1 (5) and 1.2] that the exponents I(«) in Theorem [1.9 are the best
possible.

Applications to rational maps. Recall that a postcritically-finite rational map is expanding if
and only if it has no periodic critical points (see [BM17, Proposition 2.3]). Therefore, when we
restrict our_attention to postcritically-finite rational maps, we obtain the following corollaries of
Theorems , and Remark B.12.

Corollary 1.3. Let f: C — (C be a postcrztzcally -finite rational map without periodic critical
points on the Riemann sphere C andC C C be a Jordan curve containing post f with the property
that f(C) CC. Let ¢ be a real-valued Hélder continuous function on C with respect to the chordal
metric. Consider a strongly irreducible subsystem F € Sub(f,C) and denote its tile maximal
tnvariant set by Q. Then

(1.4) P(F6) =sww{ hu(Flo) + [ odu: p e Mo Flo) .

Moreover, there exists an equilibrium state pp 4 for Flo and ¢|o attaining the supremum in (Q)

Corollary 1.4 (Large deviations asymptotics). Let f: C—Cbea posteritically-finite rational
map without periodic critical points on the Riemann sphere C. Let ¢ be a real-valued Hélder
continuous function on C (with respect to the chordal metric) that is not co-homologous to a
constant in C(@) Let pgy be the unique equilibrium state for the map f and the potential ¢.
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Denote vy = fd) dpg. Then for each o € (min, max), there exists an integer N € N and a real
number Cyo > 0 such that for each integer n > N,

1 —1l(a)n
u¢<{x € 5% i sgn(a — ) —Sno(x) > sgn(a — ’y¢)a}) < Cpe 1@,

n
where Spp(x) = Z?;ol (fi()), amin and amax are defined by (), and I(«a) is defined by (E)

1.2. Strategy and organization of the paper. We now discuss the strategy of the proofs of
our main results and describe the organization of the paper.

To prove Theorem [l.1, we define appropriate variants of the Ruelle operator called the split
Ruelle operator. A similar technique was first used in [BJR02], where the authors employed a
version of the split Ruelle operator technique to reduce the problem to a uniformly expanding
situation. In the context of expanding Thurston maps, the concepts of splitting the Ruelle
operators and split Ruelle operators were first introduced in [LZ18, LZ24]. In this paper, we
generalize these concepts to subsystems.

By definition, a subsystem F may not be a branched covering map on S?. Consequently, the
local degree of F' at € dom(F') may not make sense. This leads to inadequate combinatorial
structures when studying the dynamics. As a result, the Ruelle operator may not be well-defined
and continuous. To address this, instead of a single number, we use four numbers arranged in
the form of a 2 x 2 matrix, called the local degree matriz, to describe the local degree (see Subsec-
tion p.3). Moreover, we show that such a local degree matrix is well-behaved under iteration. We
can then define the split Ruelle operator in our context (see Subsection @) The idea is to “split”
the Ruelle operator into two “pieces” so that the continuity is preserved under iteration in each
piece, and to piece them together to obtain the split Ruelle operator on the product space. Next,
we prove the existence of an eigenfunction of this operator and the existence of an eigenmeasure
of the adjoint operator. With some additional work, we establish the existence of an equilibrium
state and the Variational Principle.

To prove Theorem [1.2, we construct suitable subsystems and apply them within the thermody-
namic formalism to bound deviations using the topological pressures of these subsystems. This
strategy is based on the approximation by subsystems in Takahasi’s work [Tak20] within the
context of continued fractions. However, constructing appropriate subsystems for approximation
is not straightforward in our setting, where the dynamical systems are branched covering maps
on S2. Indeed, we need to utilize the geometric properties of visual metrics and their interplay
with the associated combinatorial structures (see Subsection @)

We now describe the structure of the paper.

After fixing some notation in Section P}, we review some notions from ergodic_theory and go
over some key concepts and results on Thurston maps in Section B. In Section H, we state the
assumptions regarding some of the objects in this paper, which we will repeatedly refer to later
as the Assumptions in Section Y.

In Section f, we define subsystems of expanding Thurston maps, introduce relevant concepts,
and prove preliminary results about them.

Section [ focuses on thermodynamic formalism for subsystems, with the main results being
Theorems and . We introduce the split Ruelle operators in Subsection (.2, and then, in
the remainder of this section, we use these operators to establish the Variational Principle and
the existence of equilibrium states for strongly irreducible subsystem.

Section [| aims to prove Theorem . We first study the properties of the rate function
(Subsection [7.1]), and then introduce the pair structures (Subsection [7.2). Subsection is
devoted to the proof of key bounds in Proposition [7.15. Finally, in Subsection [7.4, we use the

key bounds to establish Theorem [1.2.
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2. NOTATION

Let C be the complex plane and C be the Riemann sphere. Let S? denote an oriented topo-
logical 2-sphere. We use N to denote the set of integers greater than or equal to 1 and write
Np == {0} UN. For z € R, we define |x| as the greatest integer < z, and [x| the smallest
integer > z. For = € R, we denote the sign function by sgn(z), which takes the value —1, 1, or
0 depending on whether x is negative, positive, or zero. The cardinality of a set A is denoted by
card(A).

Let g: X = Y be a map between two sets X and Y. We denote the restriction of g to a subset
Z of X by g|z.

Consider a map f: X — X on a set X. The inverse map of f is denoted by f~!. We write f»
for the n-th iterate of f, and f~" := (f*)~!, for each n € N. We set f¥ := idy, the identity map
on X. For a real-valued function ¢: X — R, we write

n—1
(2.1) Snp(w) = She(x) =Y ¢(f(z))

=0
for z € X and n € Nyg. We omit the superscript f when the map f is clear from the context.
Note that when n = 0, by definition we always have Spp = 0.

Let (X,d) be a metric space. For each subset Y C X, we denote the diameter of Y by
diamg(Y') = sup{d(z,y) : =, y € Y}, the interior of Y by int(Y"), and the characteristic function
of Y by 1y, which maps each x € Y to 1 € R and vanishes otherwise. For each r > 0 and
each x € X, we denote the open (resp. closed) ball of radius r centered at x by Bg(z,r) (resp.
By(z,7)). We often omit the metric d in the subscript when it is clear from the context.

For a compact metric space (X, d), we denote by C(X) (resp. B(X)) the space of continuous
(resp. bounded Borel) functions from X to R, by M(X) the set of finite signed Borel measures,
and P(X) the set of Borel probability measures on X. For u € M(X), we denote by ||u| the
total variation norm of u, and by supp p the support of u (the smallest closed set A C X such
that |u|(X \ A) = 0). Additionally, for u € C'(X), we denote

(s u) = /udu,
and define the finite signed Borel measure upy € M(X) as

(up)(A) = /ud,u for Borel set A C X.
A

For a point z € X, we define ¢, as the Dirac measure supported on {z}. For a continuous map
g: X — X, we set M(X,g) to be the set of g-invariant Borel probability measures on X. If we do
not specify otherwise, we equip C'(X) with the uniform norm ||-||c(x) = [|*[|oc, and equip M(X),
P(X), and M(X,g) with the weak* topology. According to the Riesz representation theorem
(see for example, [Fol99, Theorems 7.17 and 7.8]), we identify the dual of C'(X) with the space
M(X).

The space of real-valued Holder continuous functions with an exponent 5 € (0, 1] on a compact
metric space (X, d) is denoted as C%#(X, d). For each ¢ € CO8(X,d),

. lp(x) — d(y)| .
|bls -:SUP{W-%Z/GX,JU#?J},

and the Holder norm is defined as [|¢[|co.s = [9]s + [|9llc(x)-
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3. PRELIMINARIES

3.1. Thermodynamic formalism. We first review some basic concepts from ergodic theory
and dynamical systems. We refer the reader to [KH95, Chapter 20] and [Wal82, Chapter 9] for
more detailed studies of these concepts.

Let (X, d) be a compact metric space and g: X — X a continuous map. Given n € N,
dg(z,y) = max{d(gk(x),gk(y)) :kef0,1,...,n—1}}, forz, yeX,

defines a metric on X. A set F' C X is (n,€)-separated (with respect to g), for some n € N and
€ > 0, if for each pair of distinct points z, y € F', we have dy(x,y) > .

For each real-valued continuous function ¢ € C(X), the following two limits exist and are
equal (see for example, [KH95, Subsection 20.2]), which we denote by P(g,v):

- 1 R |

(3.1) P(g,¢) = el—l>%l+ I;Lrgilolg - log Ny(g,,e,n) = e1_1%1+ légj_gf - log Ny(g,%,¢€,n),

where Ny(g,1,e,n) = sup{zer exp(an/)(x)) : E C X is (n,e)-separated with respect to g}.
We call P(g,1) the topological pressure of g with respect to the potential 1. In particular, when
1 = 0, the quantity hiop(g) = P(g,0) is called the topological entropy of g. Note that P(g,) is
independent of d as long as the topology on X defined by d remains the same (see for example,
[KH95, Subsection 20.2]). Moreover, the topological pressure is well-behaved under iteration.
Indeed, if n € N, then P(g", Sp¢) = nP(g,v) (see for example, [Wal82, Theorem 9.8 (i)]).

We denote by B the o-algebra of all Borel sets on X. A measurable partition £ of X is a
collection & = {A; : i € J} consisting of countably many (i.e., either finite or countably infinite)
mutually disjoint sets in B, where J is the index set. The measurable partition ¢ is finite if the
index set J is a finite set.

Let £ ={A;:j € J}and n = {By : k € K} be measurable partitions of X, where J and K are
the corresponding index sets. We say that £ is a refinement of n if for each A; € &, there exists
By, € n such that A; C By. The common refinement (or join) £ V n of £ and 7 defined as

f\/T]Z:{AjﬁBk:jGJ,kGK}
is also a measurable partition. Put g~ (&) == {g7'(4;) : j € J}, and for n € N define

n—1

&=\ 97 =¢vg OV - vg Q.

J=0

Let £ = {A; : j € J} be a measurable partition of X and p € M(X,g) be a g-invariant Borel
probability measure on X. For € X, we denote by £(x) the unique element of ¢ that contains .
The information function I,, maps a measurable partition £ of X to a p-a.e. defined real-valued
function on X in the following way:

(3.2) L&) (x) = —log(u(&(x))),  forze X.

The entropy of € is H(§) == —>_,c; u(A))log (u(A))) € [0, +oc], where 0log0 is defined to
be zero. One can show that (see for example, [Wal82, Chapter 4]) if H,(£) < +oo, then the
following limit exists:

(3.3) h(g.€) = lim - H, (") € [0, +00).

n—+oo N

The quantity h,(g,&) is called the measure-theoretic entropy of g relative to {. The measure-
theoretic entropy of g for u is defined as

(3.4) hu(g) = sup{h,(g,§) : £ is a measurable partition of X with H,(§) < +o0}.
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If p € M(X,g) and n € N, then (see for example, [KH95, Proposition 4.3.16 (4)])

(3.5) hu(g") = nhu(g).
If t € [0,1] and v € M(X, g) is another measure, then (see for example, [Wal82, Theorem 8.1])
(36) htu—&-(l—t)u(Q) - thu(Q) + (1 - t)hl/<g>

For each real-valued continuous function ¢ € C(X), the measure-theoretic pressure P, (g,v) of
g for the measure p € M(X, g) and the potential ¢ is

(3.7) Pulg.) = u(9) + [0

The topological pressure is related to the meagsure-theoretic pressure by the so-called Varia-
tional Principle. It states that (see for example, [KH95, Theorem 20.2.4])

(3:8) P(g,%) = sup{Pu(g,%) : p € M(X,9)}
for ¢ € C(X). In particular, when 1 is the constant function 0,
(3.9) htop(9) = sup{hyu(g) : p € M(X, g)}.

A measure p that attains the supremum in (@) is called an equilibrium state for the map g and
the potential ¢». A measure p that attains the supremum in (@) is called a measure of mazrimal
entropy of g.

3.2. Thurston maps. In this subsection, we go over some key concepts and results on Thurston
maps, and expanding Thurston maps in particular. For a more thorough treatment of the subject,
we refer to [BM17].

Let S? denote an oriented topological 2-sphere. A continuous map f: S? — S? is called a
branched covering map on S? if for each point x € S?, there exists a positive integer d € N,
open neighborhoods U of z and V of y := f(x), open neighborhoods U" and V' of 0 in ((Aj, and
orientation-preserving homeomorphisms ¢: U — U’ and n: V' — V' such that ¢(z) = 0,7(y) = 0,
and (77 ofo @‘1)(2) = 29 for each z € U’. The positive integer d above is called the local degree
of f at x and is denoted by deg;(z) or deg(f,z).

The degree of f is

degf= Y degs()
z€f~1(y)
for y € S? and is independent of y. If f: S? — S% and g: S? — S? are two branched covering
maps on 52, then so is f o g, and

(3.10) deg(f o g,x) = deg(g, ) deg(f, g(x))

for 2 € S?, and moreover, deg(f o g) = (deg f)(degg).

A point x € S? is a critical point of f if degs(z) > 2. The set of critical points of f is denoted
by crit f. A point y € S? is a postcritical point of f if y = f(z) for some x € crit f and n € N.
The set of postcritical points of f is denoted by post f. Note that post f = post f™ for all n € N.

Definition 3.1 (Thurston maps). A Thurston map is a branched covering map f: S — S? on
S? with deg f > 2 and card(post f) < +oo.

We now recall the notation for cell decompositions of S? used in [BM17] and [Lil7]. A cell of
dimension n in S?, n € {1, 2}, is a subset ¢ C S? that is homeomorphic to the closed unit ball
B" in R™, where B" is the open unit ball in R”. We define the boundary of c, denoted by Oc, to
be the set of points corresponding to 9B™ under such a homeomorphism between ¢ and B". The
interior of c is defined to be inte(c) = ¢\ dc. For each point = € S2, the set {x} is considered as
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a cell of dimension 0 in S2. For a cell ¢ of dimension 0, we adopt the convention that dc = ) and
inte(c) = c.
We record the following definition of cell decompositions from [BM17].

Definition 3.2 (Cell decompositions). Let D be a collection of cells in S2. We say that D is a
cell decomposition of S? if the following conditions are satisfied:

(i) the union of all cells in D is equal to S2,
(i)
(iii) for ¢1, co € D with ¢ # ¢, we have inte(c1) Ninte(co) = 0,
(iv)

We record [BM17, Lemma 5.3] here to review some facts about cell decompositions.

if ¢ € D, then Oc is a union of cells in D,

every point in S? has a neighborhood that meets only finitely many cells in D.

Lemma 3.3. Let D be a cell decomposition of S2.

(i) If o and T are two distinct cells in D with c N1 # 0, then one of the following statements
hold: 0 C 01, 71 C 0o, or o NT = do N OT and this intersection consists of cells in D of
dimension strictly less than min{dim o, dim 7}.

(ii) If o, 11, ..., T are cells in D and inte(c) N (1p U---U 1,) # 0, then o C 7; for some
ie{l,...,n}.

Definition 3.4 (Refinements). Let D’ and D be two cell decompositions of S2. We say that D’
is a refinement of D if the following conditions are satisfied:

(i) every cell ¢ € D is the union of all cells ¢ € D’ with ¢/ C ¢.
(ii) for every cell ¢ € D’ there exists a cell ¢ € D with ¢/ C c.

Definition 3.5 (Cellular maps and cellular Markov partitions). Let D’ and D be two cell de-
compositions of S2. We say that a continuous map f: S? — S? is cellular for (D', D) if for every
cell ¢ € D', the restriction f|. of f to ¢ is a homeomorphism of ¢ onto a cell in D. We say that
(D', D) is a cellular Markov partition for f if f is cellular for (D’,D) and D’ is a refinement of
D.

Let f: S? — S? be a Thurston map, and C C S? be a Jordan curve containing post f. Then
the pair f and C induces natural cell decompositions D"(f,C) of S2, for each n € Ny, in the
following way.

By the Jordan curve theorem, the set S\ C has two connected components. We call the closure
of one of them the white 0-tile for (f,C), denoted by X0, and the closure of the other one the
black 0-tile for (f,C), denoted be X. The set of O-tiles is X°(f,C) = {X?, X3}. The set of

0-vertices is VO(f,C) := post f. We set V (f.C) = {{z} : z € VY( f, )}. The set of 0-edges
EY(f,C) is the set of the closures of the connected components of C \ post f. Then we get a cell
decomposition

D°(£,0) = X"(f,0) UE*(£,0) UV"(£.C)
of S? consisting of cells of level 0, or 0-cells.

We can recursively define the unique cell decomposition D"(f,C). n € N, consisting of n-cells
such that f is cellular for (D"*1(f,C),D"(f,C)). We refer to [BM17, Lemma 5.12] for more
details. We denote by X™(f,C) the set of n-cells of dimension 2, called n-tiles; by E"(f,C) the
set of n-cells of dimension 1, called n-edges; by V" (f,C) the set of n-cells of dimension 0; and by
V™(f,C) the set {z : {z} € V"'(f,C)}, called the set of n-vertices. The k-skeleton, for k € {0, 1},
of D™(f,C) is the union of all n-cells of dimension % in this cell decomposition.

We record [BM17, Proposition 5.16] here in order to summarize properties of the cell decom-
positions D™ (f,C) defined above.



12 ZHIQIANG LI, XIANGHUI SHI, AND YIWEI ZHANG

Proposition 3.6 (M. Bonk & D. Meyer [BM17)). Let k, n € Ny, f: S — 5% be a Thurston
map, C C S? be a Jordan curve with post f C C, and m = card(post f).

(i) The map f* is cellular for (D"T*(f,C), D"(f,C)). In particular, if c is any (n + k)-cell,
then f¥(c) is an n-cell, and f*|. is a homeomorphism of ¢ onto f*(c).
(i) Let ¢ be an n-cell. Then f~*(c) is equal to the union of all (n+ k)-cell ¢ with f*(¢) = c.

(iii) The 1-skeleton of D™(f,C) is equal to f~™(C). The 0-skeleton of D"(f,C) is the set
V" (f,C) = f~"(post f), and we have V(f,C) C V"*(f C).

(iv) card(X"(f,C)) = 2(deg f)", card(E™(f,C)) = m(deg f)", and card(V"(f,C)) < m(deg f)".

(v) The n-edges are precisely the closures of the connected components of f~"(C)\ f~"(post f).
The n-tiles are precisely the closures of the connected components of S*\ f~"(C).

(vi) Ewvery n-tile is an m-gon, i.e., the number of n-edges and the number of n-vertices con-
tained in its boundary are equal to m.

(vii) Let F := f* be an iterate of f with k € N. Then D™(F,C) = D™ (f,C).
We record [BM17, Lemma 5.17].

Lemma 3.7 (M. Bonk & D. Meyer [BM17)]). Let k, n € Ng, f: S?> — S? be a Thurston map,
and C C S? be a Jordan curve with post f C C.

(i) If ¢ C S? is a topological cell such that f*|. is a homeomorphism onto its image and f*(c)
is an n-cell, then ¢ is an (n + k)-cell.

(i) If X is an n-tile and p € S? is a point with f*(p) € inte(X), then there exists a unique
(n + k)-tile X" with p € X' and f*(X') = X.

Remark 3.8. Note that for each n-edge e € E"(f,C), n € Ny, there exist exactly two n-tiles in
X"(f,C) containing e".

For n € Ny, we define the set of black n-tiles as
Xp(f,C) = {X e X"(f,€): [*(X) = Xg},
and the set of white n-tiles as
Xy (f.0) = {X e X"(£,€) : f*(X) = Xy}

From now on, if the map f and the Jordan curve C are clear from the context, we will sometimes
omit (f,C) in the notation above.
We denote, for each 2 € S? and each n € Z, the n-bouquet of =

(3.11) U™(z) = J{Y" € X" : there exists X" € X" with z € X", X" N Y™ # 0}
if n > 0, and set U™(x) := S? otherwise.

For each n € Ny, we define the n-partition O,, of S? induced by (f,C) as
(3.12) O,, = {inte(X™) : X" € X"} U {inte(e") : " € E"} UV".

We can now give a definition of expanding Thurston maps.

Definition 3.9 (Expansion). A Thurston map f: S? — S? is called expanding if there exists a
metric d on S? that induces the standard topology on S? and a Jordan curve C C S? containing
post f such that

(3.13) lim max{diam,(X) : X € X"(f,C)} = 0.

n—-+00
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Remark 3.10. It is clear from Proposition @ and Definition @ that if f is an expanding
Thurston map, so is f” for each n € N. We observe that being expanding is a topological property
of a Thurston map and independent of the choice of the metric d that generates the standard
topology on S2. By Lemma 6.2 in [BM17], it is also independent of the choice of the Jordan
curve C containing post f. More precisely, if f is an expanding Thurston map, then
lim max{diamz(X) : X € X"(f, C)}=0
n—-+00

for each metric d that generates the standard topology on S? and each Jordan curve C C S? that
contains post f.

For an expanding Thurston map f, we can fix a particular metric d on S? called a visual metric
for f. For the existence and properties of such metrics, see [BM17, Chapter 8]. For a_visual
metric d for f, there exists a unique constant A > 1 called the ezpansion factor of d (see [BM17,
Chapter 8] for more details). One major advantage of a visual metric d is that in (S2,d) we have
good quantitative control over the sizes of the cells in the cell decompositions discussed above.
We summarize several results of this type ([BM17, Proposition 8.4, Lemmas 8.10, and 8.11]) in
Lemma M

Lemma 3.11 (M. Bonk & D. Meyer [BM17]). Let f: S? — S? be an expanding Thurston map,
and C C S?% be a Jordan curve containing post f. Let d be a visual metric on S% for f with
expansion factor A > 1. Then there exist constants C' > 1, K > 1, and ng € Ny with the
following properties:

(i) d(o 7') > C~IA™" whenever o and T are disjoint n-cells for some n € Ny.
(ii) C < diamg(7) < CA™ for all n-edges and all n-tiles T and for all n € Ny.
(iii) B ( K~'A™) C U"(x) C By(x, KA™") for each x € S? and each n € Ny.
(iv) U™mo(x) C By(x,r) C U™ (x) where n = [—logr/logA] for all v > 0 and z € S>.
(v) For everyn-tile X™ € X"(f,C), n € Ny, there exists a point p € X" such that By(p, C"1A=") C
X" C By(p, CA™™).
Conversely, if d is a metric on S? satisfying conditions (i) and (ii) for some constant C' > 1
then d is a visual metric with expansion factor A > 1.

Recall U™ () is defined in (B.11)).

Remark 3.12. If f: C — C is a rational expanding Thurston map, then a visual metric is

quasisymmetrically equivalent to the chordal metric on the Riemann sphere C (see [BM17, The-
2|z—w|

orem 18.1 (ii)]). Here the chordal metric ¢ on C is given by o(z,w) = ORI for all

z, w € C, and o(00,2) = o(z,00) = W for all z € C. We also note that quasisymmetric
embeddings of bounded connected metric spaces are Holder continuous (see [Hei0l, Section 11.1
and Corollary 11.5]). Accordingly, the classes of Holder continuous functions on C equipped with
the chordal metric and on S2 = C equipped with any visual metric for f are the same (up to a
change of the Holder exponent).

A Jordan curve C C S?% is f-invariant if f(C) C C. If C is f-invariant with post f C C, then
the cell decompositions D"(f,C) have nice compatibility properties. In particular, D"**(f,C) is
a refinement of D"(f,C), whenever n, k € Ny. Intuitively, this means that each cell D"(f,C) is
“subdivided” by the cells in D"**(f,C). A cell ¢ € D™(f,C) is actually subdivided by the cells
in D"*(f,C) “in the same way” as the cell f"(c) € D°(f,C) by the cells in D¥(f,C).

For convenience, we record [BM17, Proposition 12.5 (ii)] here.
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Proposition 3.13 (M. Bonk & D. Meyer [BM17]). Let k, n € Ny, f: S? — S? be a Thurston
map, and C C S? be an f-invariant Jordan curve with post f C C. Then every (n + k)-tile X™+F
is contained in a unique k-tile X*.

We are interested in f-invariant Jordan curves that contain post f, since for such a Jordan curve
C, we get a cellular Markov partition (Dl(f,C), Do(f,C)) for f. According to Example 15.11 in
[BM17], such f-invariant Jordan curves containing post f need not exist. However, M. Bonk
and D. Meyer [BM17, Theorem 15.1] proved that there exists an f"-invariant Jordan curve
C containing post f for each sufficiently large n depending on f. We record it below for the
convenience of the reader.

Lemma 3.14 (M. Bonk & D. Meyer [BM17]). Let f: S? — S? be an expanding Thurston map,
and C C 52 be a Jordan curve with post f C C. Then there exists an integer N(f, ) € N such
that for eachn > N(f,C ) there exists an f"-invariant Jordan curve C isotopic to C rel. post f.

We summarize the existence, uniqueness, and some basic properties of equilibrium states for
expanding Thurston maps in the following theorem.

Theorem 3.15 ([Lil8)). Let f: S? — S? be an expanding Thurston map and d a visual metric
on S for f. Let ¢, v € C%P(S?,d) be real-valued Hélder continuous functions with an exponent
B € (0,1]. Then the following statements are satisfied:

i) There exists a unique equilibrium state or the map f and the potential ¢.
He
(ii) For each t € R, we have %P(f, ¢+ ty) = [y dpgtiy-
(iii) If C C S? is a Jordan curve containing post f with the property that f™¢(C) C C for some
ne € N, then py (U5 f74(C)) = 0.
(iv) Let p be the unique equilibm’um state for the map f and the potential y. Then pg = .,

if and only if there exist a constant K € R and a continuous function u € C(S?) such
that p —y=K +uo f —u.

Theorem B.15 - . (i) is part of [Lil8, Theorem 1.1]. Theorem B.15 - m (ii) follows immediately from
[Lil& Theorem 6.13] and the uniqueness of equilibrium states in Theorem E Theo-
rem E%__ m was established in [Lil8, Proposition 7.1]. Theorem E was estabhshed
in [Lil8, Theorem 8.2].

4. THE ASSUMPTIONS

We state below the hypotheses under which we will develop our theory in most parts of this
paper. We will selectively use some of the following assumptions in the remaining part of this

paper.
The Assumptions.
(1) f: S? — S? is an expanding Thurston map.
(2) C € S?%is a Jordan curve containing post f with the property that there exists an integer
ne € N such that f*¢(C) C C and f™(C) € C for each m € {1, ..., n¢ — 1}.
3) F € Sub(f,C) is a subsystem of f with respect to C.
4) d is a visual metric on S? for f with expansion factor A > 1.
5) 5 € (0,1].
6) ¢ € CO’B(SQ, d) is a real-valued Hélder continuous function with an exponent 8. Denote

Qin '= min di, Qmax *=  max du, and Zy = [min, Qmax|-
in = ol IO o= e ) @ 0 = [min, Qo]

(
(
(
(
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(7) pg is the unique equilibrium state for the map f and the potential ¢. Denote v, := [¢ dpie.
e € is a 0-edge.
(8) ® € E°(f,C) 0-edg

Note that the notion of subsystems in will be introduced in Definition EI

Observe that by Lemma .14, for each f in , there exists at least one Jordan curve C that
satisfies . Since for a fixed f, the number n¢ is uniquely determined by C in , in the
remaining part of the paper, we will say that a quantity depends on C even if it also depends on
nge.

Recall that the expansion factor A of a visual metric d on S? for f is uniquely determined by
d and f. We will say that a quantity depends on f and d if it depends on A.

In the discussion below, depending on the conditions we will need, we will sometimes say “Let
f, C, d, ¢ satisfy the Assumptions in Section Y., and sometimes say “Let f and C satisfy the
Assumptions in Section {.”; etc.

5. SUBSYSTEMS

In this section, we set the stage for subsequent discussions. We start with the definition of
subsystems of expanding Thurston maps and the associated cell decompositions.

In Subsection , we prove a few preliminary results for subsystems, which will be used
frequently later. We categorize these results according to their assumptions.
In Subsection p.3, we introduce the notion of the local degree for a subsystem. Although a

subsystem may not be a branched covering map or possess structures as good as those found in
Thurston maps, such as the structures of flowers (see [BM17, Section 5.6]), we propose a solution
to these challenges, namely, rather than relying on a single number, we use a 2 X 2 matrix to
represent the local degree, consisting of 4 numbers. Our findings suggest that this approach is
a natural way to capture the behavior of the local degrees under iteration similar to (&) (see
Lemma p.9).

In Subsection @, we introduce tile matrices of subsystems, which are useful tools to describe
the combinatorial information of subsystems.

In Subsection p.5, we define irreducible (resp. strongly irreducible) subsystems, which have nice
dynamical properties. We will use these concepts frequently in Section [§. These requirements
can be weakened, but for the brevity of the presentation, we will require the subsystem to be
irreducible or strongly irreducible.

In Subsection @i we investigate some distortion estimates that serve as the cornerstones for
the analysis of thermodynamic formalism for subsystems.

5.1. Definition of subsystems. We first introduce the definition of subsystems along with
relevant concepts and notations that will be used frequently throughout this section. Additionally,
we provide examples to illustrate these notions.

Definition 5.1. Let f: S? — S? be an expanding Thurston map with a Jordan curve C C S?
satisfying post f C C. We say that a map F': dom(F) — S? is a subsystem of f with respect to
C if dom(F) = |JX for some non-empty subset X C X!(f,C) and F = fldom(r)- We denote by
Sub(f,C) the set of all subsystems of f with respect to C. Define

Sub,(f,C) == {F € Sub(f,C) : dom(F') C F(dom(F))}.
Consider a subsystem F' € Sub(f,C). For each n € Ny, we define the set of n-tiles of F to be

(5.1) X"(F,C) = {X" € X"(f,C) : X" C F"(F(dom(F)))},
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where we set F¥ := idg> when n = 0. We call each X" € X"(F,C) an n-tile of F. We define the
tile maximal invariant set associated with F' with respect to C to be

(5.2) QF,C) = (U x"(F,C)),

neN
which is a compact subset of S2. Indeed, Q(F.C) is forward invariant with respect to F, namely,
F(Q(F,C)) C Q(F,C) (see Proposition @ ) We denote by F the map Flope): Q(F,C) —
Q(F,C).
Let X[?, X2 € X%f,C) be the black 0-tile and the white O-tile, respectively. We define the
color set of F as
¢(F,C) = {ce {b,w}: X € X"(F,C)}.

For each n € Ny, we define the set of black n-tiles of F as

XP(F,C) = {X e X"(F,C): F"(X) = X},
and the set of white n-tiles of F as

XL(F,C)={X e X*(F,C) : F"(X) = Xp }.
Moreover, for each n € Ny and each pair of colors ¢, s € {b,10} we define

XL(FC)={XeX}(FC): X CX]}

In other words, for example, a tile X € X7 (F,C) is a black n-tile of F contained in X3, i.e., an
n-tile of F that is contained in the white 0-tile X2 as a set, and is mapped by F™ onto the black
0-tile X

By abuse of notation, we often omit (F,C) in the notations above when it is clear from the
context.

Remark 5.2. Note that an expanding Thurston map f: S? — 52 itself is a subsystem of f with
respect to every Jordan curve C C S? satisfying post f C C, and we have X"(f,C) = X"(f,C) for
each n € Ny and Q(f,C) = S? in this case. Generally, the map F defined in Definition .1l is not a
branched covering map and dom(F') may not be connected. Therefore, the results in [DPTUZ21)
cannot be applied directly to our context.

We discuss the following examples separately.
Example 5.3. Let f, C, F satisfy the Assumptions in Section @
(i) The map F satisfies dom(F) = X! C X for some X} € X}(f,C). In this case, F' is not
surjective, and € is an empty set.
(i) The map F satisfies dom(F) = X! C X? for some ¢ € {b,1v} and X! € X!(f,C). In this
case, F' is not surjective, and one can check that € is non-empty and card(Q2) = 1.
(iii) The map F satisfies dom(F) = X! U X} C X0 for some ¢ € {b, w0} and disjoint X!, X! €
Xg (f,C). In this case, F' is not surjective, and one can check that € is non-empty and
uncountable.

(iv) The map F satisfies dom(F) = X} U )Z'[} for some X{, )N(& € Xi(f,C) satisfying X} C
inte(Xg) and )?g - inte(X,%). In this case, F' is not surjective and Q = {p, ¢} for some
peX}andqe )Zbl One sees that F(Q) = {p} # Q since F(p) = p and F(q) = p.

(v) The map F satisfies dom(F) = X} U X} for some X} € X{(f,C) and X}, € XL(f.C)
satisfying X C inte(XQ) and X, C inte(X(). In this case, F is surjective and Q = {p, ¢}
for some p € X! and g € X,;. One sees that F(Q) = Q since F(p) = ¢ and F(q) = p.
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The map F: dom(F) — S? is represented by Figure @ Here S? is identified with a
pillow that is obtained by gluing two squares together along their boundaries. Moreover,
each square is subdivided into 3 x 3 subsquares, and dom (F) is obtained from S? by
removing the interior of the middle subsquare X € XL (f,C) and X} € X{(f,C) of the
respective squares. In this case, ) is a Sierpiniski carpet. It consists of two copies of the
standard square Sierpinski carpet glued together along the boundaries of the squares.

32

\

FIGURE 5.1. A Sierpinski carpet subsystem.

The map F: dom(F) — S? is represented by Figure @ Here S? is identified with a
pillow that is obtained by gluing two equilateral triangles together along their boundaries.
Moreover, each triangle is subdivided into 4 small equilateral triangles, and dom (F) is
obtained from S? by removing the interior of the middle small triangle X, [} € X%( f,C) and
X} € XL(f,C) of the respective triangle. In this case,  is a Sierpifiski gasket. It consists
of two copies of the standard Sierpinski gasket glued together along the boundaries of the
triangles.

F

FIGURE 5.2. A Sierpinski gasket subsystem.

5.2. Basic properties of subsystems. In this subsection, we collect and prove a few prelimi-

nary results for subsystems.

Proposition 5.4. Let f, C, F satisfy the Assumptions in Section. Consider arbitrary n, k € Ny.
Then the following statements hold:

(i) If X € X"*k(F,C) is any (n + k)-tile of F, then F¥(X) is an n-tile of ', and F*|x

is a homeomorphism of X onto F¥(X). As a consequence, we have {FF(X) : X €
X"tR(F,C)} C X™(F,C).
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(i) For each X™ € X"(F,C), the set J{Y € X"**(F,C) : Y C F~%(X™)} is equal to the
union of all (n + k)-tiles (of F) X € X"**(F,C) with FF(X) = X".

(iii) The tile mazimal invariant set Q) is forward invariant with respect to F, i.e., F(Q) C Q.

Proof. [i) If X € X7+5(F,C), then X € X"+5(f,C) and X C F~(+%)(F(dom(F))) (recall (5.1)).
Thus F¥(X) C F¥(F-"R)(F(dom(F)))) € F~"(F(dom(F))). Since F¥|x = f*|x, it follows
from Proposition that F*(X) is an n-tile of F and F*|x is a homeomorphism of X onto
F*(X).
It suffices to show that if X" € X"(F,C), then
{X ex"™"(F,C): F¥(X) = X"} = {X e X"™M(F,C): X C F7*(X™)}.

If X € X""*(F,C) and F¥(X) = X", then X C F~*(F¥(X)) € F~%(X™). For the converse
direction, suppose that X € X"**(F,C) and X C F~%(X™). Then F¥(X) C FF(F~F(X™)) C X"
Thus F*(X) = X" since both X™ and F*(X) are n-tiles by statement (i).

We write Q" = |JX"(F,C) for each n € Nyp. Then it follows from statement that

+o0 +o0 +00
F(Q™1) C Q" for each n € Ny. Thus F(Q) = F( N m) C N FOQ)C N CQby
n=1 n=1 n=0

(.2 0

Proposition 5.5. Let f, C, F satisfy the Assumptions in Section . We assume in addition that
f(C) CC. Then the following statements hold:

(i) UxtR(F,C) Cc UX™(F,C) C JUXY(F,C) = dom(F) for alln, k € N.
(i) X(F,C) = X2(F,C) UXZ(F,C) for each m € Ny and each ¢ € {b,10}.
(iii) F71(Q\C) C Q\ C. Moreover, if C C int(dom(F)), then F~1(C) C Q, and in particular,
FHQ)=qQ.
(iv) If Q satisfies card(Q Ninte(X?)) > 2 for each ¢ € €(F,C), then Q has no isolated points,
i.e., Q) is perfect.

Proof. By (@), it is clear that |JX!(F,C) = dom(F) and |JX"(F,C) C dom(F) for each
n € N. Hence, it suffices to show that

(5.3) Jxt o clJx o

for each n € N._We prove (@) by induction on n € N.

For n =1, (@) holds trivially.

We now assume that (5.3) holds for n = £ for some £ € N. Let X**2 € X**2(F,C) be arbitrary.
It suffices to show that X2 C X! for some X‘*! € X*1(F,C). Since X2 C |JX(F,C)
and f(C) C C, by Proposition@ and Lemma , there exists a unique X! € XY(F.C
containing X**2. Denote Y™ := F(X*2). Note that Y*™! € X**1(F,C) by Proposition
Then by the induction hypothesis, we have Y+ C | JX(F,C). Similarly, there exists a unique
Yt e XY(F,C) containing Y. We set X := (F|x1)"'(Y"). It is clear that X2 C X+
since Y C Y. By Lemma @ , we have X+ € X“1(f,C). Then it follows from (@) and

X FrY (YY) € FPY(FTY(F(dom(F)))) = F-E D (F(dom(F)))

that X! € X**1(F,C). The induction step is now complete.

Let m_€ Ny and ¢ € {b,w} be arbitrary. Since f(C) C C, it follows immediately from
Proposition that each m-tile X € X™(f,C) is contained in exactly one of X and XQ.
Thus {ii] holds.
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Let y € Q\ C be arbitrary. Since f(C) C C and y ¢ C, it suffices to show that z € Q
for each z € F~1(y). Let x € F~'(y) be arbitrary. Without loss of generality we may assume
that y € inte(X7). Then by Lemma ii) there exists a unique 1-tile X! € X!(F,C) with
z € X' and F(X') = X{. Since y € QN inte(XY), by (@) and Lemma , for a
sufficiently large integer ng € N there exists a sequence of tiles {Y™01*}, . satisfying Yotk ¢
Xnotk(F C) and y € Ynotktl C ynoth C mte(XO) Then it follows from Proposition @ (i) and
Lemma | that @ € X"oFtk+l .= (F|y) 71 (Y otF) e xnotktl(F, C) for each k € N. Hence
T € gen X”OHerl C Q by (5.2) and statement .

We now assume that C C int(dom(F)). We first show that F~1(C) C Q.

Let y € C and # € F~!(y) be arbitrary. It suffices to show that z € Q. Since z € dom(F) =
UXY(F,C), there exists a X! € %1(F C) such that x € X!. Then we have F(X!) = X0 for
some ¢ € {b,;}. Since y € C C X?, by Proposition E there exists Y1 € X!(f,C) Such
that y € Y C X0. We claim that Y1 € XY(F,C). Indeed, since y € C C int(dom(F)), we
have Y! M int(dom(F)) # (. Thus inte(Y'!) N int(dom(F)) # @. Then inte(Y'!) N dom(F) #
() and it follows from Lemma and Definition (iii) that Y' € X'(F,C). Applying
Proposition@and Lemma B.7 (i), we have X2 = (F|x1) Y(Y1) € X2(F,C) and z € X2 C X!
since F(r) =y € Y!. Then we have that F?(X?) = X{ for some s € {b,w}. Similarly, since
F(y) € F(C) C C, there exists a 1-tile Z! € X!(f,C) such that F(y) € Z' C X{. By the
same argument as before, with y and Y! replaced by F(y) and Z!, respectively, we deduce
that Z! € X'(F,C). Then we have X3 = (F?|x2)"}(Z!) € X3(F,C) and € X3 C X? since
F%(z) = F(y) € Z'. Thus by induction, there exists a sequence of tiles {X"} such that
X" € X"(F,C) and z € X" C X™ for each n € N. Hence z € ),y X" C Q by (@3

To verify that F~1(Q) = Q, by Proposition @ , it suffices to show that F~1(Q) C Q. Since

“1Q\C) CQ\CCQand F71(C) C Q, the proof is complete.

We fix a visual metric d on S? for f. It suffices to show that for each p € Q and each r > 0,
the set (Bq(p,7)\ {p}) N is non-empty. Since p € Q, for each n € Ny there exists X" € X"(F,C)
which contains p. Thus by Lemma tll , for each sufficiently large integer n there exists
X™ e X"(F,C) such that p € X™ and X™ C By(p,r). We fix such an integer n € Ny and an n-tile
X" € X"(F,C). Then F*(X") = X{ for some ¢ € €(F,C), and F"|xn is a homeomorphism of X"
onto X. Then it follows from statement (iii) that (F"|x»)"1(Q\C) C F™(Q\C) CQ\C C Q.
Thus, by the assumption in statement (iv), we have card(X" N Q) > card(Q N inte(XcO)) = 2,
which completes the proof.

Proposition 5.6. Let f and C satisfy the Assumptions in Section . We assume in addition that
f(C) CC. Consider F € Sub,(f,C). Then the following statements hold:

i) {F(X): X e X" (F,C)} = X"(F,C) for eachn € Ny. In particular, if F(dom(F)) = S?,
then X7 (F,C) # 0 for each ¢ € {b,10} and each n € Ny.
(ii) F(2) =Q #0.
Proof. Let n € Ny be arbitrary. We first establish
(5.4) {F(X): X e X""1(F,C)} = X"(F,C).

It follows from Proposition @ that {F(X): X € X""}(F,C)} C X"(F,C). Thus, it suffices
to show that for each X™ € X"(F,C), there exists X € X"*!(F,C) such that F(X) = X™.

Fix arbitrary X™ € X"(F,C). Since dom(F') C F(dom(F)), we have X" C F(dom(F)) by
Proposition @ m Then by Proposition | there ex1sts a unique X" € X°(f,C) containing
X", Thus inte(X") N F(dom(F)) is non- empty as it contains inte(X™). Noting that F'(dom(F'))
is a union of O-tiles in X°(f,C), by Lemma B.3, we conclude that there exists X! € X!(F,C) such
that F(X!) = XO.
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We denote by X the set (F|x1)"1(X™). Since F(X , it suffices to_show that X €
X"*tL(F,C). Note that X € X"*1(f,C) by Proposmon . and Lemma @ . Since
X = (Flx)7H(x") € F7H(X™) € F~"FD(F(dom(F))),

it follows from (EI) that X € X""1(F,C), which establishes (@)
If F(dom(F)) = S?, then X°(F,C) = X°(f,C). Then it follows from (@), Proposition @ ,
and induction that X7 (F,C) # 0 for each ¢ € {b,tv}.

We write Q" := |JX"(F,C) for each n € Ny. Then it follows from statement (i) and
induction that Q™ # @ and F(Q"!) = Q" for each n € Ny. Thus, by Proposition m and

(@) we have Q = (129 O™ £ ().
By Proposition we have F(Q2) C Q. For the reverse inclusion Q C F(Q), let = € Q be

arbitrary. For each n € N, since x € Q"1 = F(Q"), we can find y, € Q" with F(y,) = z. By
compactness of S2 and the nested property of {Q"},¢cn, the sequence {4, }nen has a limit point
y € Q. The continuity of F' then implies z = F(y) € F(f). O

5.3. Local degree. In this subsection, we define the degree and local degrees for a subsystem.
We show that local degrees are well-behaved under iteration.

Definition 5.7. Let f, C, F satisfy the Assumptions in Section @ The degree of F' is defined as
deg (F) := sup{card(F ' ({y})) : y € S*}.
Fix arbitrary = € S? and n € N. We define the black degree of F™ at x as
degy (F", x) == card(Xy (F,C,x)),
where XU (F,C,x) = {X € X}(F,C) : x € X} is the set of black n-tiles of F' at x. Similarly, we
define the white degree of F™ at x as
deg,, (F", x) := card(X}, (F,C,x)),
where X} (F,C,z) ={X € X}}(F,C) : x € X} is the set of white n-tiles of F' at x. Moreover, the
local degree of F™ at x is defined as
(5.5) deg(F", x) := max{deg,(F",z),deg, (F", )},
and the set of n-tiles of F' at x is X"(F,C,z) = {X € X"(F,C) : x € X}. Furthermore, for each
pair of colors ¢, s € {b,w} we define
XL (F.Cox) ={X e XL(F,C):x € X},
deg . (F",z) == card(X[,(F,C,x)),
and the local degree matrix of F™ at x is

nooy . |degep(F7 @) degyy (F™, 2)
Deg(F", z) = [degbm(F”,x) degp (F", )|

One sees that deg(F,z) > 1 if and only if x € dom(F'), and that if deg(F, x) > 1 then x € crit f.

Remark 5.8. If we assume that f(C) C C, then for each n € N, by Proposition , each n-tile
X" € X"(F,C) is contained in exactly one of X and X{ so that X"(F,C) = Ue, seqo,} Xis(F5C).
Thus it follows immediately from Definition that X"(F,C,x) = Uc,se{b,m} X (F,C,z) and
|Deg(F™, z)||sum = card(X™(F,C,z)) for each n € N and each = € S?, where

Deg(F™, 2)[sum = Z deg, (F", ).
¢,s€{b,w}
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Moreover, for all n € N, z € S2, and ¢ € {b, 1w}, by Proposition @ , we have

(5.6) deg (F",x) = Z deg. (F", x).
se{b,iv}

To describe the local degree for a subsystem, instead of a single number, we use 4 numbers
written in the form of a 2 x 2 matrix. Indeed, we prove that the local degree matrix is well-behaved
under iteration.

Lemma 5.9. Let f, C, F satisfy the Assumptions in Section . We assume in addition that
f(C) CC. Then for all x € S* and n, m € N, we have

(5.7) Deg(F" "™, x) = Deg(F", ) Deg(F™, " (x)).
Proof. Let z € S, n, m € N, and ¢, 5 € {b,w} be arbitrary. It suffices to show that

deges (F"™™,w) = degy(F", o) dega(F™, " ().
te{b,w}

By Propositions and @ , every X" € Xt™(F,C, z) is contained in a unique X" €
X"(F,C). Moreover, X" is contained in X{ since X"™™ is contained in X? by definition. Thus
X" is contained in Uy p vy Xis(F,C, 7).

Now let t € {b,w} and X" € X{,(F,C,z) be arbitrary, and define

X = { X" e xR CLog) L X C X7,

By Proposition @ , each X" € X is mapped by F" homeomorphically to Y™ := F7(X"+m),
and Y™ € X (F,C, f*(x)) since Y™ C F*(X") = X2 and Y™ has the same color as X" ™. More-
over, it follows from Lemma i) and Proposition @ that the map F"|xn» induces a bijection
Xtm oy Fr(X"T™) between X and X7 (F,C, f"(x)). Thus card(X) = card(X(F,C, f(z))) =
deg ((EF™, f"(x)), which is independent of X™.

Combining the two arguments above, we get

card(Xpt™(F,C,x)) = > card(Xp(F,C,x)) deg(F™, f"(x)).
te{b,w}
This completes the proof. O
5.4. Tile matrix. In this subsection, we introduce a 2 x 2 matrix called the tile matrix to

describe tiles of a subsystem according to their colors and locations. We show that the tile
matrix is well-behaved under iteration.

Definition 5.10 (Tile matrices). Let f, C, F satisfy the Assumptions in Section @ We define
the tile matriz of F' with respect to C as

N, N,
5.8 A= A(F,C) == | ™ "“’] ,
(5.8) (F,C) [Nmb Ny

where
Nes = Neo(A) = card{X € XL(F,C) : X C X2} = card (X}, (F,C))

for each pair of colors ¢, 5 € {b,10}. For example, Ny is the number of black tiles in X!(F,C)
which are contained in the white 0-tile X2.

Remark 5.11. Note that the tile matrix A(F,C) of F' with respect to C is completely determined
by the set X1(F,C). Thus for each integer n € Ny and each set of n-tiles T C X"(f,C), similarly,
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we can define the tile matrix of T and denote it by A(T). For example, when T = X" (F,C) for
some n € Ny, we define

n — | Now(X"(F,C))  Now(X"(F,C))
AXUEC) = | Nowle(F,0)) NL(%“(F,C))} |
where Ne(X™(F,C)) = card({X € X"(F,C) : X € X(f,C), X C X?}) = card(X%(F,C)) for
each pair of colors ¢, s € {b,}.

Proposition 5.12. Let f, C, F satisfy the Assumptions in Section . We assume in addition
that f(C) C C. Then for each integer n € N, we have

(5.9) AX"(F,C)) = (A(XN(F.0)))",
i.e., the tile matriz of X"(F,C) equals the n-th power of the tile matriz of X'(F,C).

Remark 5.13. Note that if the map F(dom(F)) = S?, then A(X?) is a 2 x 2 identity matrix
and (@) holds for n = 0.

Proof. For convenience, we write for each n € Ny,

— Nmm(A(%n(F7C))) me(A(:{n(F,C)))]
Nws(AX"(F,C)))  Nep(AX"(F.C))) ]

Let k, £, m € Ny with m > £ > k be arbitrary. By Proposition @ , the map F* preserves
colors of tiles of F, i.e., if X™ is an m-tile of F, then F*(X™) is an (m — k)-tile of F with the
same color as X™. Moreover, if Y* is an (-tile of F, then it follows from Lemma and
Proposition @ that the map F*|y induces a bijection X™ + F¥(X™) between the m-tiles
of F contained in Y* and the (m — k)-tiles of F' contained in the (¢ — k)-tile Y*=F := Fk(Y¥).

If we use this for m = k + 1 and £ = k, then we see that a white k-tile of F' contains tv; white
and by black (k + 1)-tiles of F, and similarly each black k-tile of F' contains w) white and b}
black (k + 1)-tiles of F'. This leads to the identity

Wi brpgpr|  [top bi| [tor by
Wiy bipq| [ by [0} b

for each k € Ny. This implies (@) O

w = are)

The following proposition is not used in this paper but should be of independent interest.

Proposition 5.14. Let f, C, F satisfy the Assumptions in Section . We assume in addition
that f(C) C C. If the tile matriz A of F with respect to C is not degenerate, then for each n € Ny
and each X" € X"(F,C) we have X" NQ # (.

We say that the tile matrix A of F' with respect to C is degenerate if A has one of the following
forms:
a bl [0 0
b o) 2]

Proof. Fix arbitrary integer n € Ny and tile X" € X"(F,C). Recall that we set F* = idge.
By Proposition @y, we have F"(X") = X2 € XO(f,C) for some ¢ € {b,iw} and F"|xn
is a homeomorphism of X™ onto X?. Since the tile matrix A is not degenerate, there exists
a tile Y! € X1(F,C) such that Y! C X?. Hence by Lemma @ and Proposition @ ,
there exists a tile X" € X"*(F,C) such that X"*! C X" and F*(X"*!) = Y!. Since
Frl(xntly ¢ x0(F,C), similarly, there exists a tile X2 € X"*2(F,C) such that X"+2 C xn+1,
Thus by induction, there exists a sequence of tiles { X" *},cy, that satisfies X" % € X"k (F, C)

where a, b € Np.
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and X" TF+1 C X" for each k € Ny. By Lemma , the set (e, X is the intersection
of a nested sequence of closed sets with diameters convergent to zero. Thus, it contains exactly
one point in S2. Since MNken, Xtk C XN Q by (@) and Proposition @ , the proof is
complete. 0

5.5. Irreducible and primitive subsystems. In this subsection, we specialize in irreducible
(resp. strongly irreducible) subsystems and primitive (resp. strongly primitive) subsystems, which
have additional properties.

Let f, C, F satisfy the Assumptions in Section @

Definition 5.15 (Irreducibility). We say that F' is an irreducible (resp. a strongly irreducible)
subsystem (of f with respect to C) if for each pair of colors ¢, s € {b,w}, there exists an integer
n =n(c,s) € Nand X" € X(F,C) satisfying X" C X{ (resp. X" C inte(X)). We denote by
np the constant max, sep,w} 72(¢,5), which depends only F' and C.

Obviously, if F' is irreducible then €(F,C) = {b,tw} and F(dom(F)) = S2.
Note that the subsystem F' defined in Example is strongly irreducible if the front side
of the left pillow shown in Figure is black.

Definition 5.16 (Primitivity). We say that F' is a primitive (resp. strongly primitive) subsystem
(of f with respect to C) if there exists an integer nyp € N such that for each pair of colors
¢, 5 € {b,iv} and each integer n > np, there exists X" € X7(F,C) satisfying X" C X (resp.
X" C inte(XY?)).

Obviously, if F' is primitive (resp. strongly primitive), then F' is irreducible (resp. strongly
irreducible).
Note that the subsystem F' defined in Example @ is strongly primitive.

Remark 5.17. By [Lil&, Lemma 5.10], an expanding Thurston map f is a strongly primitive
subsystem of itself with respect to every Jordan curve C C S? satisfying post f C C.

Definition 5.18. A matrix all of whose entries are positive (resp. non-negative) is called positive
(resp. non-negative). Let A be a square non-negative matrix. If for any 4, j there is n € N such
that (A™);; > 0, then A is called irreducible; otherwise A is called reducible. If some power of A
is positive, A is called primitive.

Remark 5.19. If we assume that f(C) C C, then it follows immediately from Definitions
and Proposition p.12 that F' is irreducible (resp. primitive) if and only if the tile matrix of F' is
irreducible (resp. primitive).

Proposition 5.20. Let f, C, I satisfy the Assumptions in Section . We assume in addition
that f(C) CC. Then the following statements hold:

(i) If F is irreducible, then | J;cy F~%(z) is dense in Q for each x € 52.
(ii) If F is strongly irreducible, then Q N inte(X?) # 0 for each ¢ € {b,w}.

Proof. Fix an arbitrary point € S2. It suffices to show that the closure of | J;cy F () in
S? contains 2. By (EI), Proposition @ , (@), and (), it suffices to show that for each
n € N and each X" € X"(F,C), X" NU,;en F " () # 0.

Fix arbitrary n € N and X" € X"(F,C). Since z € S? = XQ U X{, there exists ¢ € {b, 10} such
that = € Xco. By Proposition , X™ is mapped by F™ homeomorphically to a 0-tile XS for
some s € {b,t0}. Since F is irreducible, by Definition , there exist k € N and Y* € f{f F.C
such that Y* C X0 and F*(Y*) = X0. Then it follows from Lemma and Proposition @
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that XF+7 = (F"\Xn)_l(Yk) € XFn(F,C). Since z € X0 = FF7(XF7) and X" C X we
conclude that X™ N J,cn F*(2) # 0.

Fix arbitrary ¢ € {b,tv}. Assume that F' € Sub(f,C) is strongly irreducible. Then by
Definition , there exist n € N and X" € X"(F.C) such that X" C inte(X) and F"(X") =
X0, Thus, by Lemma @ and Proposition Q , there exists X" € X?"(F,C) such that
X2 C X™ and F"(X?") = X™. Since X" C inte XO and F?(X?") = XV, similarly, there
exists X" € X3"(F,C) such that X3 C X?" and FQ"(X?’") X™. Thus by induction, there
exists a sequence of tiles {Xk"}keN such that X*" € ¥*"(F,C) and X +Dn C Xkn C inte(XY?)
for each k € N. Hence the set [,y X* C inte(X?) is the intersection of a nested sequence of
closed sets so that it is non-empty. Since (e X** C Q by (@) and Proposition @ ., we
deduce that Q Ninte(X?) # 0. O

Lemma 5.21. Let f, C, F' satisfy the Assumptions in Section . Suppose that F' € Sub(f,C) is
irreducible (resp. strongly irreducible) and let np € N be the constant in Definition , which
depends only on F' and C. Then for each k € Ny, each ¢ € {b,w}, and each k-tile X* € X*(F,C),
there exists an integer n € N with n < np and XF" € Xk7(F C) satisfying X" C X* (resp.
XEn Cinte(XF)).

Proof. Assume that F' is irreducible. Fix arbitrary k& € Ng, ¢ € {b,1}, and X* € X*(F,C). B
Proposition @ , XF is mapy :)ed by F* homeomorphically to X° := F¥(X*) € X°(f,C). Slnce
F is irreducible, by Definition , there exists n € N with n such that there exists X{* €
X"(F,C) satisfying X" C X©. Then it follows from Lemma @ (i) and Proposition @ . (i) that
XEn = (FF| )71 (X7) is an (k+n)-tile satisfying X5+ C X*. Since FF7(XFn) = F*(XP) =
X% and Xktn € FF(X?) € F-+)(F(dom(F))), we conclude that X" ¢ xF+n(F,C) and
the proof is complete in this case.

For strongly irreducible F', by the same argument as above we can prove the corresponding
results. O

Lemma 5.22. Let f, C, F satisfy the Assumptions in Section . We assume in addition that F €
Sub(f,C) is primitive (resp. strongly primitive). Let np € N be the constant from Definition ,
which depends only on F and C. Then for each n € N with n > np, each m € Ny, each
¢ € {b,w}, and each m-tile X™ € X™(F,C), there exists an (n + m)-tile X?*t™ € X"t™(F,(C)
such that XMt C X™ (resp. XPT™ C inte(X™)).

Proof. Assume that F' is primitive. Let integer n > np, m € Ny, ¢ € {b,t0}, and X" € X" (F,C)
be arbitrary. By Proposition , X™ is mapped by F™|ym homeomorphically to X" :=
F™(X™). Since F is primitive, there exists X € X7(F,C) satisfying X" C X°. Then it follows
from Lemma @ and Proposition that X = (F™|xm) 1(XP) is an (n + m)-tile
satisfying X?*™ C X™. Since F"(Xm) = F*(XP) = X0 and XM C F~™(XDP) C
F~(+m)(F(dom(F))), we conclude that X+™ ¢ X247 (F,C).

For strongly primitive F', by the same argument as above we can prove the corresponding
results. O

5.6. Distortion lemmas. For the convenience of the reader, we first record the following lemma
from [Lil8, Lemma 3.13], which generalizes [BM17, Lemma 15.25].

Lemma 5.23 (M. Bonk & D. Meyer [BM17)], Z. Li [Lilg]). Let f, C, d, A satisfy the Assumptions
in Section . Then there exists a constant Cy > 1, depending only on f, C, and d, with the
following property:

Ifn, k € Ng, X"k € XnHr(f,0), and x, y € X"*F, then

(5.10) Cy ld(z,y) < d(f"(2), ["(y)/A" < Cod(z,y).
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The next distortion lemma for expanding Thurston maps follows immediately from [Lil§,
Lemma 5.1].

Lemma 5.24. Let f, C, d, A, ¢, B satisfy the Assumptions in Section . Then there exists a
constant Cy > 0 depending only on f, C, d, ¢, and B such that for all n € Ny, X" € X"(f,C),
and x,y € X",

(5-11) [Sné () = Sné(y)| < Crd(f™(x), f"(y))” < C1(diama(5%))".
Quantitatively, we choose
(5.12) Cr = Colgls/(1 - A7),

where Cy > 1 is the constant depending only on f, C, and d from Lemma .
We establish the following distortion lemma for subsystems of expanding Thurston maps.

Lemma 5.25. Let f, C, F, d, A, ¢, B satisfy the Assumptions in Section . We assume in
addition that f(C) C C. Then the following statements hold:

(i) For each n € Ny, each ¢ € &(F,C), and each pair of points x, y € X2, we have
ZX"G%?(F,C) eXP(55¢((Fn|X")_ (x)))
2o xnexr(FL) exp(SFo((F|xn) " (x)))

where C1 = 0 is the constant defined in () in Lemma and depends only on f, C,
d, ¢, and .

(ii) If F s irreducible, then there exists a constant C>1 depending only on F, C, d, ¢, and
B such that for each n € Ny, each pair of colors ¢, s € €(F,C), each x € XCO, and each
XO, we have

(5.13) < exp(Crd(z,y)?) < exp(Ci(diamg(S?))?),

S xrexr(re) P (Sy o((F"xr) " (2))) oy
Y xrexz(re) P(SEO((FMxp)~1(y))) S
Quantitatively, we choose
(5.15) C = (deg f)"* exp(2nFH<z5Hoo + C1(diamg(S%))7),

where ng € N is the constant in Definition | and depends only on F and C, and C7 >
is the constant defined in (p.12) in Lemma m and depends only on f, C, d, ¢, and B

Proof. We fix arbitrar No, ¢ € €(F,C), and z,y € X!. For each X" € X(F,C), i
follows from Proposition @ i that F"|xn is a homeomorphlsm from X" onto X?. Then by
Lemma p.24, we have

exp(Sy ¢ ((F"|x») " (@) = S5 o ((F"[xn) "' (v))) < exp(Crd(z,y)").

(5.14)

Thus
eXp(Sg(f)((Fn’)(n)_l(l‘))) < exp(Cld(:c, y)ﬁ) exp(qub((FﬂXn)_l(g%.
By summing the last inequality over all X™ € X7 (F,C), we can conclude that () holds

We assume that F' is irreducible and let np € N be the constant from Definition ,
which depends only on F and C.

For convenience, we write I{'(z) = X xncxn(re) exp(SEQ((F"|xn)"'(2))) for n € Ny, ¢ €
¢(F,C), and z € X? . Since F' is irreducible, by Definition p.15 and Proposition , we have
C(F,C) = {b,w} and X7 (F,C) # 0 for each n € Ny and each ¢ € {b,w}. Thus I7*(z) > 0 for each
n € Ny, each ¢ € {b,w}, and each z € X?.

In the rest of the proof we fix arbitrary ¢, s € {b,w}, z € X?, and y € X?.
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We first consider an arbitrary integer n € {0, 1, 2, ..., ng}. Since card(X?(F,C)) < card(X?(f,C)) =

(deg f)™ and X' (F,C) # 0, we have
516 [2(x) _ card(X}(F,C)) exp(n]|6]c)
13(y) — card(Xy(F,C)) exp(—nl|¢loo)

Thus () holds.

We now consider an arbitrary integer n > np. Since F' is irreducible, by Definition , there
exists ng. € N with nse < np such that there exists Y,’sc € Xs<(F,C) satisfying Y C X?.
Then for each X € X77"(F,C), it follows from Lemma @ . (i) and Pr0p051t10n @ that
Y = (F" " |x )71 (V") € XI'(F,C). This defines an injective map from X" (F,C) to X'(F,C)
that maps each X € X" "<(F,C) to Y = (F" "s|x) ! (Y>) € XI'(F,C). Moreover, applying
Lemma , we have

Su d(F" )™ (1)) 2 Sy ny o (F" )™ (1)) = nacl¢lloo

> Sy, H((F""|x) (@) — Ci(diama(5%))7 — np|d]lo
since (F™|y) 1(y) €Y C X € X" "<(f,C) and ng < np. Hence,
(5.17) 127" (2) < 1P y) exp(nr ]| 6]l oo + Ci(diamg(5%))°).
In order to establish (), it suffices to show that
I (x) < (deg £)"" exp(np| o) I ().
For each X € X7 " (F,C), we  set E(X)={X"e X}F,C): F*<(X") = X}. It follows imme-
diately from Proposition that X7 (F,C) = Uyexn- nse (F.0) E(X). By Proposition @ (ii),
for each X € XP~"s<(F,C), we have card(F (X)) < (deg f)™* < (deg f)"F. Moreover, for each
X" e B(X),
n -1 n n—"Nse —
Spd((F"|xn)™ () = Sy, ((F"|xn) 7 (@) + Sy, 0 (F" " |x) " (2)
<npll9lloo + Sy, H((EF" " |x) 7 (@)

< (deg f)"F exp(2np||¢] o)

Therefore, we get
HOEEDY Y exn(Sye((Fxn) 71 (2))
Xext s (FC) X"€E(X)
<D (deg )" exp(np@lloo) exp(Sy_n, ((F" " |x) " (2)))
Xex{ " (FC)
= (deg f)"" exp(npl| o) 1" ().
Combining this with (), we establish () by choosing C as in (), which depends only
on F,C,d, ¢, and . O
6. THERMODYNAMIC FORMALISM FOR SUBSYSTEMS

This section focuaes on thermodynamic formalism for subsystems, with the main results being
Theorems and (.30. These theorems establish the Variational Principle and demonstrate the
existence of equilibrmm states for subsystems of expanding Thurston maps.

In Subsection p.1], we define the topological pressure of a subsystem with respect to a potential
via the tile structures determined by the subsystem.
In Subsection we define appropriate variants of the Ruelle operator called split Ruelle op-

erators (Definition (.9). One cannot use the Ruelle operator introduced in [Lil8] for a subsystem
in the proofs of Theorems and @ directly. One fundamental problem is that the direct
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adaptation of the Ruelle operator L4: C(S?) — C(S?) may not be well-defined for subsystems.
More precisely, it is possible that L4(u) ¢ C(S?) for some u € C(S?) due to the subtle combina-
torial structures of subsystems. Our strategy here is to “split” the Ruelle operator into two pieces
so that in each piece, the continuity is preserved under iteration. We note that the concept of
splitting the Ruelle operators was first introduced in [LZ18]. We extend this definition to split
Ruelle operators for subsystems.

We next develop the thermodynamic formalism to establish the existence of equilibrium states
for subsystems. We follow [Lil§] in several places, but we have made some notable changes to
address the challenges posed by the subsystems. We first introduce the split sphere S as the
disjoint union of Xg and X{. Then the product of function spaces and the product of measure

spaces can be identified naturally with the space of functions and the space of measures on S ,
respectively (Remark ) Since the split Ruelle operator L4 acts on the product of function
spaces, its adjoint operator L7  acts on the product of measure spaces. We have to deal with

functions and measures on the split sphere S while the measures we want (for example, the
equilibrium states) should be on S?. Therefore, we make extra efforts to convert the measures
on S provided by thermodynamic formalism into measures on S2. Moreover, by the local degree
defined in Subsection @, we establish Theorem @ and Proposition so that we show that
an eigenmeasure for L} pisa Gibbs measure on S? under our identifications (Proposition M .
Then we construct an_f-invariant Gibbs measure pr g4 with desired properties in Theorem .

Finally, in Theorem , we prove that such pp 4 is an equilibrium state.

6.1. Pressures for subsystems. In this subsection, we define the topological pressure for sub-
systems.

Definition 6.1. Let f, C, F satisfy the Assumptions in Section H For a real-valued function
©: 52 = R, we denote

Zn(F, @) = Z exp (sup{SEp(z) : z € X"})
Xnexn(F,C)

for each n € N. We define the topological pressure of the subsystem F with respect to the potential
¢ by

(6.1) P(F, g) = liminf = log(Zn(F, ).

n—4+oco N

In particular, when ¢ is the constant function 0, the quantity hiop(F) = P(F,0) is called the
topological entropy of the subsystem F'.

Remark. We note that _the definition (@) used here differs from the classical definition (@) in the
context of Subsection B.1|, which applies to_F|g and ¢|q. We study the relationship between these
two topological pressures in Proposition ﬁ and ultimately demonstrate that, for a strongly
irreducible subsystem and a Hélder continuous potential, they coincide (see Theorem [5.29).

Lemma 6.2. Let f, C, F satisfy the Assumptions in Section . We assume in addition that
f(C) CC. Consider a real-valued function p: S*> — R. Then for all k, £ € N, we have

(6.2) Zrt(Fy @) < Zip(F, ) Zo(F, ).
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Proof. For each k, £ € N,

adF) = Y explsup{SEoplx) x € XFH)
Xk exh+(FC)
< Z exp (sup{ St p(z) 1z € XkM}) exp (sup{Sf o(F¥(z)) 1z € XkM})
Xk+H xR (FC)
< Z exp(sup{Sf«p(y) (Y € Xe}) Z exp(sup{S,fcp(:L') 1x € XkM})
XteXt(F,C) Xkttexhtl(FC)

Fk(xk+l):X£
< Z exp(sup{Sfcp(y) RS XE}) Z exp(sup{S,fgo(y) RS Xk})
Xtex!(FC) Xkexh(F,C)

Here, the first inequality uses the fact that S{. ,o(z) = S} ¢(z)+Sf o (F¥(z)), the second irﬁual—

ity follows from Proposition , and the last inequality also follows from Proposition ,
which shows that for each (-tile X* € X*(F,C) the map from {X € X*(F,C) : FF(X) = X'} to
XF(F,C) induced by Proposition is injective. O

We record the following well-known lemma and refer the reader to [MUO03, Lemma 2.11] for a
proof.

Lemma 6.3. If a sequence {an}nen of real number is subadditive (i.e., aiy; < a; + a; for all
i, 7 €N), then lim,_, 1o an/n exists in RU{—oc} and is equal to inf{a,/n : n € N}.

Lemma 6.4. Let f, C, F satisfy the Assumptions in Section . We assume in addition that
f(C) CC. Consider ¢ € C(S?). Then
i 1
P(F,¢) = lim —log(Zn(F,¢)) € [~|¢lloo, +00).

n—+oo n
Proof. By Proposition @ , Q(F.C) # (. Then for each n € N we have |JX"(F,C) # () and

Zn(F,p) > 0. Thus by Lemmas and B.3, the sequence {1 log(Z,(F, go))}neN is subadditive
and

P(F.¢)= lim 1log<zn<F,so>>=ggg{;1og<zn<m>>}eRu{oo}.

n—+oo n

It suffices now to prove that 1 log(Z,(F,¢)) is bounded from below by —|/¢[|«. Let 29 € € be
arbitrary. Then for each n € N, we have zg € |JX"(F,C) and

Zn(Fyp) = Z exp(sup{Sfo(z) 1 2 € X)) > exp(SEp(x)) = e mllelec,
Xnexn(FC)
Therefore, we get 1 log(Z,(F,¢)) = —|¢|lo for each n € N and P(F,¢) > —|¢||oo. O

The topological entropy of F' can in fact be computed explicitly via tile matrices (defined in
Subsection @)

Proposition 6.5. Let f, C, I satisfy the Assumptions in Section . We assume in addition that
f(C) CC. Let A be the tile matriz of F with respect to C. Then we have

(6.3) htop(F) = log(p(4)),
where p(A) is the spectral radius of A.

Remark. The spectral radius p(A) can easily be computed from any matrix norm. If for an (m x
m)-matrix B = (bj;) we set || Bllsum = >_}";_; |bij| for example, then p(A) = 1y, 400 (|| A™ [|sum ) /™.
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Proof. By (@) and Proposition @ , we have
1 1
hiop(F') = lim inf — log(card(X"(F,C))) = liminf — log Z card(X(F,C)).

n—+o0o N n—+0o N
¢,5€{b,0}

Then it follows from Remark and Proposition that
1
op(F') = liminf — log|| A" ||sum-
htop(F) = lim inf — log||A™|
Since p(A) = limy_s oo ([|A"||sum) /", We deduce that hiep(F) = log(p(A)). O

6.2. Split Ruelle operators for subsystems. In this subsection, we define appropriate vari-
ants of the Ruelle operator for subsystems (see Definition (.9) on the suitable function spaces in
our context.

Let f: S? — S? be an expanding Thurston map with a Jordan curve C C S? satisfying
post f C C. Let X, X2 € X%(f,C) be the black 0-tile and the white 0-tile, respectively.
Definition 6.6 (Partial split Ruelle operators). Let f, C, F satisfy the Assumptions in Section @
Consider ¢ € C(S?). We define a map o B(X?) — B(X?), for ¢, s € {b,w}, and n € Ny,

Fpes®
by
L8 W)=Y dego(F",2)u(x) exp(SEo(x))
(6.4) veF W)
= > w((@"x) " W) exp(SFe((F"x7) " ()
Xnexn (F,C)

for each real-valued bounded Borel function u € B(X?) and each point y € X?.

Note that by default, a summation over an empty set is equal to 0. We will always use this
convention in this paper.
If X0 C F(dom(F)) for some ¢ € {b, 1}, then

if s =¢
E(g) _ u 1
Fica(®) 0 ifs#c
for each s € {b, v}, which means that E;Q,Zo,mc
satisfying X0 C F(dom(F)).
Remark 6.7. If we assume in addition that f(C) C C, then by Propositions and @ fo

r
alln € N and y € inte(X?), the summation (with respect to tiles) on the right-hand side of (@)
becomes a summation with respect to preimages, i.e.,

‘C%’T,Lg)p,gs(u)(y) = Z u(z) exp(SEp(z)).

x€F~F(y)Ninte(X?)

is the identity map on B(X?) for each ¢ € {b, 0}

Lemma 6.8. Let f, C, F satisfy the Assumptions in Section . Consider ¢ € C(S?%). We
assume in addition that f(C) C C and F € Sub.(f,C). Then for alln, k € Ny, ¢, s € {b,w}, and
u € C(X?), we have

(6.5) £ () e C(X?) and
n+k n k
(6'6) ‘Cé’,::,c,)s(u) = Z £%,20,c,t(£%,<)p,t,s(u))‘

te{b,w}
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Proof. The case of Lemma @ where either n = 0 or k£ = 0 follows immediately from Definition @
Thus, we may assume without loss of generality that n, k € N.

The continuity of Egi)p, ¢ s(u) follows trivially from (@) and Proposition @ . Note that the
number of terms in the summation in (f.4) is fixed as y in X varies, and each term is continuous
with respect to y when y € X? by Proposition

We next establish (@) by proving that the two sides of (@) are equal at each point y € X?.
Indeed, by Continuity, we only need to prove this for y € inte (X 0) Since f(C) C C, each

preimage 2 € F~*(y) belongs to the set S2\ C = mte(XO) U mte(XO) when y € mte(XO) Then
by Remark p.7, we get the first two equalities and the second equality of the following:

Z ‘C(,goct kjms(u))(y): Z Z ¢Sn (@) Z u(z)esffw(Z)

te{b,o} te{b,w} ze F—(y)Ninte(X?) 2€F—F(z)Ninte(X?)

— Z Z u(z)eSn @S e(2)

z€F~"(y) 2€ F~*(z)Ninte( X2)

= Z u(z)estrk‘p(z)

z€F~(n+k) (y)Ninte(X?)
n+k
= L3P (u)(y),

where_the second-to-last equality holds since 2 = F¥(z) and the last equality follows from Re-
mark @ [l

Definition 6.9 (Split Ruelle operators). Let f, C, F satisfy the Assumptions in Section @
Consider ¢ € C(S?). The split Ruelle operator for the subsystem F and the potential ¢

Lre: O(XY) x C(Xp) = C(Xg) x C(X2)

on the product space C(X 8) X C’(X‘g) is defined by

1 1 1 1
(6.7) L (up, ) = (L5, 4 o(ue) + L8] ¢ (), £5)) 0 o(us) + L8] o ()
for each uy € C(XE) and each uy, € C’(Xl%).

Note that by g) in Lemma @ the operator LLr, is well-defined, and it follows immediately
from Definition p.6 that LY » 1s the identity map on C(XP)xC(XY) if F(dom(F)) = 52. One sees
that Lge: C(XY) x C’(XO) — C(X) x C(XQ) has a natural extension to the space B(X{) x
B (Xg)@iven by ) for u, € B (X 0) and up, € B (XO). Moreover, it follows immediately
from (6.4) and (6.7) that Lp, is a positive, continuous operator on C(X[?) x C(Xp) (resp.
B(X)) x B(Xp)).

For each color ¢ € {b, 1}, we define the projection 7 : B(Xg) X B(Xr?,) — B(XP) by

(6.8) Te(Up, Un) = te,  for (up, uw) € B(Xy) x B(X3).
We show that the split Ruelle operator L, is well-behaved under iteration.

Lemma 6.10. Let f, C, F satisfy the Assumptions in Section . Consider ¢ € C(S%). We
assume in addition that f(C) C C and F(dom(F)) = S%. Then for alln € Ny, up € C(X?), and
uw € C(X3),

(6.9) H"%,go(ub) Ury) = (ﬁg?p,b,b(ub) + ﬁg«:l)p,b,m(um)v E%,m,b(ub) + ﬁgf;,m,m(um))-
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Proof. We prove (@) by induction. The case where n = 0 and the case where n = 1 both hold
by _definition. Assume now (6.9) holds for n = k for some k£ € N. Then by Definition @ and
(@) in Lemma @ for each ¢ € {b,w}, we have

e (L (up, un)) = e (Lp (L35 0 (u6) + L5 ¢ (), L8 o (ug) + L35 ()

k
= Z EF,cp,c,s(‘C%,zo,ﬁ,b(ub)+£g’,<)p,5,m(um))
se{b,w}

= 3 Y (L))

te{b,w} se{b,w}
(k+1)
Z ‘CF<p,ct
te{b,w}

for up € C’(XE?) and uy € C(XQJ). This completes the inductive step, establishing (@) O
Remark. Similarly, one can show that (@) in Lemma M holds for (ug, uy) € B(X[?) X B(Xg).

6.3. Split spheres. In this subsection, we introduce the notion of the split sphere (see Defini-
tion p.11)), and set up some identifications and conventions (see Remarks and ), which
will be used frequently in this paper.

Let f: 8?2 — S? be an expanding Thurston map with a Jordan curve C C S? satisfying
post f C C. Let X0, X0 € X°(f,C) be the black O-tile and the white 0-tile, respectively.

Definition 6.11. We define the split sphere S to be the disjoint union of X[? and X2 i.e.,
S=Xx2ux0 = {(z,¢) : c € {b,w}, z € X0}.

For each ¢ € {b, 10}, let

(6.10) ic: X0 — S

be the natural injection (defined by i.(z) == (z,¢)). Recall that the topology on S is defined
as the finest topology on S for which both the natural injections 4, and %, are continuous. In
particular, S is compact and metrizable. Obviously, a subset U of S is open in S if and only if
its preimage i 1(U) is open in X0 for each ¢ € {b, tv}.

Let X and Y be normed vector spaces over R. Recall that a bounded linear map 7" from X to Y
is said to be an isomorphism if T is bijective and T~ is bounded (in other words, ||T(x)| > C||z||
for some C' > 0), and T is called an isometry if ||T(x)| = ||z| for all x € X.

The following is a standard result in functional analysis (see for example, [Fol99, p. 160]).

Proposition 6.12 (Dual of the product space is isometric to the product of the dual spaces). Let
X andY be normed vector spaces and define T: X*xY™* — (X XY)* by T (u,v)(x,y) = u(z)+v(y).

Then T is an isomorphism which is an isometry with respect to the norm ||(x, y)|| = max{||z||, ||ly||}
on X XY, the corresponding operator norm on (X x Y)*, and the norm ||(u,v)|| = ||u|| + ||v]] on
X*xY*.

By Proposition and the Riesz representation theorem (see [Fol99, Theorems 7.17 and 7.8]),
we can identify (C’ (Xg) X C(X‘%))* with the product of spaces of finite signed Borel measures
M(XP) x M(X3), where we use the norm [|(up, up)|| = max{||uel|, uw||} on C(X{) x C(X3),
the corresponding operator norm on (C(XJ) x C(Xg))*, and the norm || (up, tiw) || = ||o || + || o |
on M(X7) x M(XD).
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From now on, we write

(6.11) (1165 o) (A, Aro) = o (Ap) + fiww (Ar),

(612) <(Nb7/1«m)7 (Ufnum» = <Mb7ub> + <ﬂmaum> = /}(OUb dub + /)(Oum d,U«n:n

b
whenever (up, fin) € M(Xg) X M(X‘?J), (up, Ury) € B(Xg) X B(Xl%), and Ap and Ay are Borel
subset of X [? and X0, respectively. In particular, for each Borel set A C S?, we define

(6.13) (16, f1r0) (A) = (o, o) (AN XP, AN XR) = o (AN XQ) + o (AN X).

Remark 6.13. In the natural way, the product space C(Xg) X C(Xg) (resp. B(Xg) X B(Xg))
can be identified with C/(S) (resp. B(S)). Similarly, the product space M (XP) x M(X3) can be
identified with M(S). Under such identifications, we write

/(ubaum)d(ﬂbvﬂm) = (o, firo), (o, o)) and  (up, tro ) (5 o) = (tp fit; Urofiro)

whenever (up, ftw) € M(X¢) x M(X2) and (up, uw) € B(XJ) x B(X3).
Moreover, we have the following natural identification of P(g )E

P(S) = { (1o, o) € M(X[?) XM(XSJ) : p and puy are positive measures, fip (X[?)—F,um (Xr?,) =1}.

Here we follow the terminology in [Fol99, Section 3.1] that a positive measure is a signed measure
that takes values in [0, 4+-00].

Remark 6.14. It is easy to see that () defines a finite signed Borel measure p = (up, fir)
on S2. Here we use the notation u (resp. (i, fiw)) When we view the measure as a measure on
S? (resp. S), and we will always use these conventions in this paper. In this sense, for u € B(S?)
we have

(6.14) ) = [ = [(unstm) Ao pw) = [ i [ i,

X0 X0
where up = ul X0 and up = ul xg9- Moreover, if both pp and py are positive measures and
po (X)) + pio (X)) = 1, then p = (pp, pin) defined by () is a Borel probability measure on S?.
In view of the identifications in Remark , this means that if (up, ) € P(S), then p € P(S?).

For each color ¢ € {b, 1}, we define the projection 7 : M(X[?) X M(X,%) — M(XCO) by
(6.15) e (o, o) = Lhe, for (pip, pw) € M(Xg) x M(XD).

6.4. Adjoint operators of split Ruelle operators. In this subsection, we investigate the
adjoint operators of split Ruelle operators for subsystems. We collect and prove a few properties
of the adjoint operators in Proposition , which will be used later.

Let f, C, F satisfy the Assumptions in Section H We assume in addition that F(dom(F)) = S2.
Consider ¢ € C(S?). Note that the split Ruelle operator Lg, (see Definition .9) is a positive,
continuous operator on C(X[?) X C(Xl%). Thus, the adjoint operator

Lip: (C(X) x C(Xy))" = (C(Xp) x C(Xy))"

of Lp,, acts on the dual space (C(XJ) x C’(Xg))* of the Banach space C'(X() x C(X3). As
discussed in Subsection @, we identify (C (X[?) X C(Xg))* with the product of spaces of finite
signed Borel measures M (X)) x M(XQ), where we use the norm [|(up, tw)|| = max{|jue|], ||uw|}
on C’(XE?) X C’(X‘%), the corresponding operator norm on (C(XE) X C(Xg))*, and the norm
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[ (15 o) || = [l 261 + [ o] Om M(XO) X M(XO) Then by Remark - we can also view Ly,

(resp. L} ) as an operator on C(S) (resp. M(S)).
In the following proposition, we summarize properties of the adjoint operator L},w

Proposition 6.15. Let f, C, F satisfy the Assumptions in Section . Consider ¢ € C(S?).
We assume in addition that f(C) C C and F(dom(F)) = S%. Consider arbitrary n € N and
(116, o) € M(XP) x M(XR). Then the following statements hold:

(1) <L},¢(Nb,ﬂm)a (Ubaum)> = <(Mbaum)7LF,¢(ub,um)> fO’F (U[;,Um) S B(XE) X B(Xg)
(ii) For each Borel set A C |JX"(F,C) on which F™ is injective, we have that F"(A) is a
Borel set, and

6.16 (L) (1265 pim0)( (deg (F™,-) exp(Sy ) o (F™a)~" dpe.
(6.16)
ce{b,w} 7 FH(ANXE
Here (L}M)n(ub,um)(fl) is defined in ()
iii) For each color ¢ € {b,10} and each Borel set A, C dom(F)N XY on which F is injective,
¢
we have that F(A.) is a Borel set, and

oan) i) (0= 3 [ (den(R ) exple) o (Fla) ™ dns
se{b,w} )Ny

(iv) (Lj)" (o, i) (U 56“—1<F,c>) = (L) " (1o, ) (U X" (F, C)), where
XhFC) = | {ic(x"): xFext(FC), X C XD}
ce{b,w}

for each k € Ny. Here i. is defined by ()

Recall that a collection 3 of subsets of a set X is a w-system if it is closed under the intersection,
ie., if A, B € 8 then AN B € P. A collection £ of subsets of X is a A-system if the following
conditions are satisfied: (1) X € £ (2) If B,C € £and BC C, then C\ B e £. (3) If A, € £,
n €N, with A, C A1, then | J, oy An € £.

Proof. We follow the identifications discussed in Remark . Recall from Definition that
S = XP U XY is the disjoint union of X{ and X{. Then Lp,, is a continuous operator on C(S).

It suffices to show that for each u € ./\/l(§ ) and each Borel set A C S,
(618) < *F7go(u)7 ]]-A> = <,U’7H-‘F,LP(]]-A)>‘

Let £ be the collection of Borel sets A C S for which () holds. Denote the collection of

open subsets of S by &. Then & is a m-system.
We observe from (@) that if {up }nen is a non-decreasing sequence of real-valued continuous

functions on S, then so is {Lp(un)}
By the definition of }L}‘;W we have

(6.19) (Lo (1), u) = (p, Ly (w))

for u € C(S). Fix an open set U C S, then there exists a non-decreasing sequence {g, }nen of
real-valued continuous functions on S supported in U such that g, converges to 1y pointwise as
n — +o0o. Then {L F,¢(gn)}n N 8 also a non-decreasing sequence of continuous functions, whose
pointwise limit is L@ﬂw. By the Lebesgue Monotone Convergence Theorem and (@), we
can conclude that (.1§) holds for A = U. Thus & C £.

neN’
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We now prove that £ is a A-system. Indeed, since () holds for u = 1z, we get S €
£. For each pair B, C € £ with B C C, it follows from (@) that 1c — 1p = 1c\p and
]LF#,(]lc) — ]LF,ap(]lB) = LF,(p(]]-C' — ]lB) = LF,@(]lC\B)- Thus C \ B e L. Finally, given A, € £,
n € N, with A, € A,11, and denote A := J,,cy An. Then {14, }nen and {LFvsﬁ(]lAn)}neN are

non-decreasing sequences of real-valued Borel functions on S that converge pointwise to 14 and
Lr(1a), respectively, as n — +oo. Then by the the Lebesgue Monotone Convergence Theorem,
we get A € £. Hence £ is a A-system.

Recall that Dynkin’s m-A theorem (see for example, [Bil0§, Theorem 3.2]) states that if P is
a m-system and £ is a A-system that contains B, then the o-algebra o(*B) generated by B is
a subset of £. Thus by Dynkin’s -\ theorem, the Borel o-algebra o(®) is a subset of £, i.e.,
equality () holds for each Borel set A C S. This finishes the proof of statement .

We fix an arbitrary Borel set A C |JX"(F,C) on which F™ is injective. Denote Ap := ANXY
and Ay, = AN XQ.

For each X" € X"(F,C), it follows from Proposition @ that F"|x» is a homeomorphism
from X" onto F™(X"™), which maps Borel sets to Borel sets. Thus F"(A) is a Borel set since

F”(A):F"( U AmX"): U Franxy= |J Flx(A).
Xnexn(FC) Xnexn(FC) Xnexn(FC)

We now prove (M) By (M), statement , and (), we get

(L) (1o, b ) (A) = (0 o), Lo (L La, ) = Z (pe, me (L o (LA, 1ay,)))-
ce{b,0}

Then it suffices to show that for each ¢ € {b,w} and each z € X?,
e (Lo (Lags 1a,)) (%) = Lpnay(2) - (deg(F", ) exp (S5 0)) o (F"[4) 7! (2).
Indeed, by (@), (@), and (@),

e (Lo (Lag, Lag)) (@) = £ (La) (@) + L8 o (La,) (@)
=3 Y (1a-en(SEe)) o (Fxn) " Hx)

se{bw} X"eXl(F,C)

=Y > (1aexp(8Fg)) o (F"[xn) N (x)

se{b,w} X"eX (F,C)

= Z (]lA-eXp(SggD))O(Fn|X")_1(33)

Xnexr(FC)
= ) deg(F",y)La(y) exp(Sf o(y))
yeF—n(z)
= Lpn(a) (@) (dege(F™,-) exp(Sy @) ) o (F"[4) "} (2),
where the third equality follows from the fact that for each s € {b,t0} and each X" € X (F,C),

the point z = (F"|x»)~"!(x) € A if and only if z € A since z € X" C X2, and the last equality
holds since F' is injective on A. Thus, we finish the proof of statement .

We arbitrarily fix a color ¢ € {b,w} and a Borel set A, C dom(F) N X? on which F is
injective. Then it follows immediately from statement that F'(A,) is a Borel set.
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We now prove ( . Without loss of generality, we can assume that ¢ = b. Then, by (),
statement (i), and (6.12), we get

7o (L (165 i) (Ap) = Lo (6, i) (Ab, 0) = (b6, o), Lo (1.4, 0))
= (to, T (Lpp(14,,0)) ) + (o, Mo (L (14, 0)) )

It suffices to show that for each s € {b,tv} and each x € X,
Ws(LF%P(]lAb?O))(x) = ]lF(Ab)(x) : (degsb(Fv : ) eXp(SD» © (F|Ab)_1($)'
Indeed, by (@), (@), and (@),

7a(Lrg(1a,.0)) (z) = £3) 1 (14,)(x)
= 3 (L exp(p)) o (Flx) M)

Xtexl (FC)

= > degy(F,y)la,(y) exp(e(y))
yeF~1(z)

= ]lF(Ab)(x)(degsb(Fv : ) exp(cp)) o (F’Ab)il(x)ﬂ
where the last equality holds since F' is injective on Ay. Thus we finish the proof of statement .
For convenience we set QF := U%R(F’C) C S and oF =47 Y(U .’%k(F,C)) C X? for each
k € Ny and each ¢ € {b,10}. Note that QF = Qf U QF and QF = J{X* € X*(F,C) : X* C X0}
for each k € Ny and each ¢ € {b,w}. In particular, we have Q° = S since F(dom(F)) = S2. By
statement (i) and (), we have
(L) " (o, 1) (2771) = (L) " (s o) (1 Q™) = (ko piv), L (L1, Tgp-1))
— (o (L (L1 T 1)) + s 7 (L (g5, L 1))
(L) (s 110) () = (L) " (1o pi) (U, ) = (o i), Lo (Lo, Loy )
= (o o (L (Tog, Lag))) + (s o (Lo (L, Tag ) ) )-

It suffices to show that for each ¢ € {b,w},
e (L}@#,(JLQF, nﬂgfl)) = me (L, (Tap, Lag))-
Indeed, by (@) in Definition @, (@) in Lemma , and (@) in Definition @,
me(Lg (Lgn-1, Lgn1)) = Eg,?p,c,b(]lﬂgfl) + ﬁg’fzo,c,m (Lon-1)

= Z Z (]192_1 . exp(ngo)) o (F|Xn)_1

se{b,w} X"eX® (F,C)

=Y > (larexp(SFy)) o (Flxn)!

sc{b,r} XnCXT (F,C)
= m(L’},qj(]ng, Loz)),

where the third e@uahty holds since X™ C Q7 C Q7! for each 5 € {b, 10} and each X" € X7 (F,C)

by Proposition and the fact Q0 = S, O
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6.5. Eigenmeasures. By applying the Schauder—Tikhonov Fixed Point Theorem, we establish
in Theorem [6.16 the existence of an eigenmeasure of the adjoint L7, & of the split Ruelle operator
Lrgs. We also show in Theorem that if F' is strongly irreducible (see Definition ),
then the set of vertices is of measure zero with respect to such an eigenmeasure.

We follow the conventions discussed in Remarks and in this subsection.

Theorem 6.16. Let f, C, F, d, ¢ satisfy the Assumptions in Section . We assume in addition
that f(C) C C and F(dom(F)) = S?. Then there exists a Borel probability measure mp s =

(mp, M) € P(S) such that

(6.20) L7 s (mp, M) = K(mp, M),
where Kk = <]L}7¢(m[,,mm), 1g). Moreover, any mpg = (my, My) € P(S) that satisfies () for

some k > 0 has the following properties:
(i) meg(AUF,C)) = 1.
(ii) If F is strongly irreducible, then mp 4( ;;08 ~J(post f)) = 0.

Note that we use the notation (my, my) (resp. mp,4) to emphasize that we treat the eigenmea-
sure as a Borel probability measure on S (resp. S2).

The proof of Theorem will be given at the end of this subsection.

Under the same assumption as in Theorem [.16 , we will show mp 4 (Uj:o(o) f7(C)) =0in
Proposition by using property .

By some elementary calculations, we have the following results for a 2 x 2 matrix.

Lemma 6.17. Let A be a 2 x 2 matriz. We denote by || Al|sum the sum of all the absolute values
of entries in A. If Ax = M\x for some A € R and 0 # x € R?, then ||A"|sum = |\ for each
n € N.

Proof. 1t suffices to consider the case when n = 1. Without loss of generality, we can assume that
for x = (x,y) we have || > |y| and = # 0. Then the inequality follows immediately by looking
at the first component of Ax: |\z| = |a11z + a12y| < |z|||A]lsum- O

Proof of Theorem [6.16. We first show the existence. Define 7 P(S) = P(S) by

L},(b(ﬂbv Nm)
(L s (16, o), 1g)

Then 7 is a continuous transformation on the non-empty, convex, compact (in the weak* topology,

T(Mh? Nm) =

by Alaoglu’s theorem) space P(.S) of Borel probability measures on S. By the Schauder—Tikhonov
Fixed Point Theorem (see for example, [DS88, Theorem V.10.5]), there exists a measure mpg4 =
(my, myp) € P(S) such that 7(my, mw) = (mp,Mmy). Thus L% 4 (mp, mw) = £(me, my) with
K= <L*F7¢(mb,mm), 15). Note that £ > 0 since F'(dom(F)) = 52

We now_show that any mpy = (mp, my) € P(S) that satisfies () for some k > 0 has
properties and .

We first verify property . For each n € Ny, we set

X'(F.C) = | {i(x"):X"ex(F,C), X" C X0},
ce{b,w}

where i, is defined by () Noting that F(dom(F)) = 52, we have |JX°(F,C) = S. Since
L% 4 (mp, mw) = K(mp, my), it follows from Proposition and induction on n that for



THERMODYNAMIC FORMALISM FOR SUBSYSTEMS AND LARGE DEVIATIONS 37

each n € N,
(o) (X (F,€)) = (o, min) (JRUFLC)) = (1m0, m)(S) = 1.
Then by Remark b.14 and (.13), for each n € N,
12 mpe (JX(F,0)) = (mo,ma) (| X(F,€)) = (m, me) (JE"(F.0)) =1
Thus, by Proposition b.9 [i] and (5.9), we have
mpg(2) = lim mF¢(U %"(F,C)) =1,

n——+00
which proves property (i

Next, we verify property Assume that F' is strongly irreducible.

We will prove that mp¢( ~J(post f)) = 0. Since U ~J(post f) is a countable set,
by property , the conclusmn follows if we can prove that mp¢({y}) = 0 for each y € QN

+oo

(post 7).

We claim that it suffices to show that mp4({x}) = 0 for each periodic x € € N post f. To
see this, let y € QN U;;OS —J (post f) be arbitrary. We follow the convention that if p ¢ Xc0
for some color ¢ € {b,w}, then m({p}) = 0. For each ¢ € {b,w}, since WC(LE(b(mb,mm)) =
me(k(mp, My )) = KM, by Proposition (iii), we have

rme({y}) = Z / (deg,.(F,-)exp(¢p)) o (F|{y})—1 dmg

sefbwy  FYHNXZ
> dego (F,y) exp(d(y))ms({F(y)})-
se{b,w}

By using the notion of local degree matrix (see Definition @), we can write the equation above
as

mo({y})] _ exp(0) o [me({FW)})
(6:21) o] = S et O]
Since F"(y) € Q C dom(F) for each n € N by Proposition @ (i), we can iterate () under F.
Then it follows from Lemma and induction that
me({y})] _ exp(Snd®)) [ m oy [T (W)})
(6.2 [mmqy})] =T e el [mqun(y)})}

for each n € N. Hence, since y € U 25 [ (post f) and mps({y}) = 0 if and only if my({y}) =
mw({y}) =0, by () it suffices to show that mp4({x}) = 0 for each periodic z € Q N post f.
It remains to show that mpg({x}) = 0 for each periodic x € € N post f. We argue by
contradiction and assume that there exists z € Q N post f such that [*(z) = = for some £ € N
and mpg({z}) # 0. Since mpy({z}) = mp({z}) + mw({z}), we may assume without loss of
generality that my({z}) > 0.
Since € Q N post f and F'(x) = x, it follows immediately from () that

mol{r))] _ expSi)) po e [molfe)
(6.23) [mm({x})] = = Deg (F*, z) [mm({x})] .

Similarly, by using Proposition repeatedly, for each k € N and each y € F~*(x), we
have

(6.24) [mb({y})} MDeg(Fu’y) [mb({x})]

mw({y}) Kkt mw({z})]
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FIGURE 6.1. |JX*(F,C,z), with card(post f) = 3.

Recall from Definition @ and Remark @ that for each k € N, X¥(F,C, ) is the collection
of (kf)-tiles of F' that intersect {z}, and contains exactly H épke H distinct (k¢)-tiles of
F. Since F' is strongly irreducible, it follows from Lemma .21 that for each k € N and each
Xkt ¢ xk(F,C, x), there exists an integer n € N with n < ng and a black (k£ + n)-tile XMHL
.’fMJrn(F C) satisfying X K C inte (X*). Here np € N is the constant in Definition , which
depends only on F' and C. Then by Proposition @ , there exists a unique y € X ket C
inte (X M) such that

FkéJrn (y) -

(see Figure @) For each k € N, we denote by T} the set consisting of one such y from each
Xk ¢ x*(F,C,x), and we have

(6.25) card(Ty) = || Deg(F*, z)||

sum’

Then {71} }ren is a sequence of subsets of szog ~J(post f). Since f is expanding, we can choose an
increasing sequence {k; };ey of integers recursively in such a way that |J X%+/(F,C, z)n|J._ Ty, =
() for each i € N. Then {T}, }ien is a sequence of mutually disjoint sets. Thus, by (6.22) and
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Lemma ,

(6.26)

mF¢(Uf POStf>
Z Z Z mre({y})

i=1 yeTy,

Sy 0[]

=1 yETk

_ Z Z eXp Sk €+n¢ )) [1 1] Deg(FkiH",y) |:mb({x}

J

eSkittn®(y) Skyed(2)

:Z > - Skid(@)  ghiltn [1 1] Deg(FH*m,y) [Zﬂ{{ﬁé]

=1 yeT},

Snd) fk Z( )) <esf¢(x)

- Z Z Sk (P(x Skiéfb(y)

i=1 yeTy,

)kim—” (1 1] Deg(F**tm, ) [Zi(({{ﬁﬂ

Kt

el eSed@)\ ki o kitrn [ me({x})
> Z Z T 52))ﬂ)< > min{l, k" "F} [1 1] Deg(F itt+ ,y) [ ] )

i=1 yeTy, M ({2})

where C > 0 is the constant defined in () in Lemma and depends only on f, C, d, ¢,
and S.

To reach a contradiction, it suffices to show that mF¢( +°° ~J(post f)) = 400 since mp g is
a Borel probability measure. For each ¢ € N and each y & T lw we have

= deg (F*i “”,y)mb({fﬁ}) my({z}),

where the equality follows from (@) in Remark @ and the last inequality holds since y € X" kittn
for some Xk i Z{k S (F,C). Thus, it follows from (m) (B (), and B a) that

mF¢<Uf postf) CZZ (eXp (Sep(x )))

P

(6.27)

=1 yETk

+oo k;
(6.28) — Oy card(T3,) <e><mie£¢<x>>)

=1

Kt

R _ exp(Spo(x)) \ ¥
— oY pes(t o), (RELD)
1=1

where C = mp({z}) min{1, k™" } exp(—npl||d| o — C1(diamg(5?))?) > 0. It suffices to show
that

(6.29) [Deg(F*,2) |y > (] exp(Se(x))"
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for each ¢ € N. We denote by M the matrix Deg(FE, x) and A the number f-sf/ exp(Syp(x)). For

each ¢ € N, by Lemma we have Deg(F*, ) = M"*. Then () follows from (6.23) and
Lemma . Combining (6.29) and (E@), we get

+o0 +oo
mp,¢(U £ (post f)) > C’Z 1 = +o0.
=0 i=1

This contradicts the fact that mpg is a finite Borel measure. The proof of property is
complete. O

6.6. Eigenfunctions. In this subsection, we establish some useful estimates for split Ruelle
operators and construct their eigenfunctions.

We follow the conventions discussed in Remarks m and in this subsection.

Proposition 6.18. Let f, C, F, d, ¢, [ satisfy the Assumptions in Section '~ We assume
in addition that f(C) C C and F € Sub(f.C) is irreducible. Let (mp,mn) € P(S) be a Borel
probability measure defined in Theorem which satisfies L}¢(mb7mm) = Kk(mp, my) where
Kk = <L}¢(mb,mm), 15). Then for each T € S, we have that %log(L%(b(ﬂg) (Z)) converges to
log k as n tends to +oc.

Proof. Note that by Lemmas and , forallm € Ng and z, y € S, we have

< Lig(15)@) _
(6.30) ol g L, (1)) <C,

where C > 1 is the constant depending only on F, C, d, ¢, and § from Lemma . Since

<(mb,m ),L%7¢(]l§)> = <(]L}7¢)n(mb,mm), ]l§> = <m”(mb,mm),]l§> = k", it follows from (p.9)
and (@) that

logk = lim 1log/L}?@(]lg)("yV)d(mb,mm)(@

n—+oo n

~ lim log / L2, (15) (&) d(mp, mu) (7)

n—+oo n

— lim - log(Liy, (1) (@)

n—+oo N
for each arbitrarily chosen = € S. O

Corollary 6.19. Let f, C, F, d, ¢, 0 satisfy the Assumptions in Section . We assume in
addition that f(C) C C and F € Sub(f,C) is irreducible. Then the following limit exists for each

z € S and is independent of T, which we denote by Dp 4:

o1 n -
Dpgy = lim —log( Rd,(]lg)(a:))

n——+oo N

Proof. By Theorem , there exists a measure (my, my) € P(S) such as the one in Proposi-
tion . The limit then clearly depends only on F, C, d, ¢, and (3, and in particular, does not
depend on the choice of (mp, My). O

We characterize Dp 4 in terms of iterated preimages.

Proposition 6.20. Let f, C, F, d, ¢, B satisfy the Assumptions in Section . We assume in
addition that f(C) C C and F € Sub(f,C) is irreducible. Then for each sequence {xp}nen of
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points in S? and each sequence {c, ynen of colors in {b,w} that satisfies x,, € X?n for each n € N,
we have

(6.31) Dw—nggloonlog Y. deg., (F"y)exp(Syo(y))-
yeF " (zn)

Furthermore, if F' is strongly irreducible, then for each zo € Q\ C, we have

Dpy= lim 1log Z exp(55¢(y)).

n—+oco N
yE(F|a) ™" (o)

Note that if F' € Sub(f,C) is strongly irreducible, then it follows from Propositions @ 11 and
@ that F(Q)=Qand Q\C # 0.

Proof. We first prove () Consider arbitrary {z, }nen and {¢, }nen that satisfy the assump-
tions. Denote Z,, := (y,, ¢,) € S for each n € N. Fix arbitrary point # € S?. By Lemmas
and , for each n € N, we have

Lt (15) (@) _ ~
L, (15)@)

where C > 1 is the constant depending only on F, C, d, ¢, and 8 from Lemma 2 11 Then
it follows immediately from Corollary , (p-4) in Definition @H and (@) in Remark ! that
5.31) holds.

Now we assume that F' is strongly irreducible. Fix arbitrary xzg € 2\ C. Without loss of
generality we may assume that zo € inte(Xg). By Corollary é and (p.9), it suffices to show
that

Cc 1«

P

(Flo)™™(z0) = {(F"[xn)'(z0) : X" € X{(F,C)}
for each n € N. Let n € N be arbitrary in the following two paragraphs.

For each y € (Fla)™™( e have y € Q C X" FC) and (Flg)"(y) = F™"(y) = x¢ €
inte(X 0). Thus by Lemma @ H and Proposition , there exists a unique n-tile X™ €
XP(F,C) with y € inte(X™) and F™"(X™) = X{. Thus we deduce that y = (F"|xn) " (zg) for
some X" € X} (F,C).

To deduce the reverse inclusion, it suffices to show that (F"|xn»)"!(zo) € Q for each X" €
XP(F,C). Let X™ € X?(F,C) be arbitrary and denote y :== (F™|xn) ! (z). Then it follows from
Proposition and induction that y € € since zg € 2N inte(X[?) and y € F~"(xp).

The proof is complete. O

Let f, C, F, d, ¢, (B satisfy the Assumptions in Section @ We assume in addition that
F € Sub(f,C) is irreducible. We define the function

(6.32) ¢:=¢— Dp,y € C¥P(S24d).
Then
(6.33) Lpg =€ " *Lpg.

If (mp, my) is an eigenmeasure as in Theorem , then by Proposition we have
(6.34) L s (1m0, M) = eDFv‘i’(mh,mm) and L;@(mb,mm) = (mp, My).
Remark. We will show in Theorem that Dp gy = P(F, ¢).

We summarize in the following lemma the properties of L 3 that we will need.
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Lemma 6.21. Let f, C, F, d, A, ¢, B satisfy the Assumptions in Section . We assume in
addition that f(C) C C and F € Sub(f,C) is irreducible. Then there exists a constant Cy > 0
depending only on F, C, d, ¢, and B such that for each n € N, each ¢ € {b,w}, and each pair of
points x, y € X2, the following inequalities holds:

(6.35) ( 3) (@ /]L ( 3) (@) exp( d(z, )5)

(6.36) c! (g)

637 [Lp5(1)@ —Lis(15)@)] < < p(C) asy))— 1) < Crd(a,y)’,
Yy

(

where T = i ac) (z,c) €8, J=1i(y) = (y,¢) €S (recall Remark 6.1 -) Cy >0 is the constant
in Lemma 5.2/ depending only on f, C, d, ¢, and B, and C > 1 is the constant in Lemma
depending only on F,C, d, ¢, and 3.

Proof. Inequality (b ) follows immediately from Lemmas , , and ()
Fix arbitrar b .}, and z, y € X0.
By Lemma @ , , and @) we have

0< ;nﬁ]lflfﬂ?a( 5)(3) <Lps(15)@) < ZEL%(%) (3) < +00

//\

and sup < Cinf. (1)(%), where C is the constant defined in (b.15) in

zesS F¢
Lemma p ‘nd depends only on F, C, d, ¢, 8. By Theorem , Proposition ,

and Corollary we can choose a Borel probability measure (i, pw) € P(S) such that
L7 5(t6, ) = (o, o) Then we have

(ko o), L35 (15)) = (L) " (tt6s 11v0); 1g) = ((ptos i), 1 g) = 1.
Thus 1 < sup- ~]L” ﬁ Cmfzes F¢(1 5)(3) < C and () holds.

Applying (6.3 and we get

L
L55(15) (@) — Lig(15) (@) = Li5(15) @) Ly (15)®

< 5(ecld(x,y)ﬁ _ 1) < 6’1d(:r,y)’8

for some constant C; depending only on Cy, C, and diamg(S?). Therefore, we establish () as
the constant C7 > 0 depends only on F', C, d, ¢, and . O

By Lemma , we can construct eigenfunctions of I Fa

Proposition 6.22. Let f,C, F, d, A, ¢, 3 satisfy the Assumptions in Sectionl We assume in ad-
dition that f(C) C C and F € Sub(f,C) is irreducible. Then the sequence {* >0 ! ]Lj ( 3}

has a subsequential limit (with respect to the uniform norm). Moreover, if upy € C(S) is such a
subsequential limit, then

(6.38) Lp3(tre) = upg and

(6.39) c '« U g(T) < C for each T € S,

where C > 1 is the constant from Lemma depending only on C, d, ¢, and p.
i

Furthermore, if we let (mgy, my) € P(S) be an eigenmeasure as in Theorem |6.16, then

(6.40) /~ s A1, i) = 1
S

neN
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and (fp, fi) = Up,p(Mp, M) € P(S) is well-defined as a Borel probability measure on S.
We will show in Theorem that a subsequential limit ug 4 as defined above is unique and

n

the sequence {2 Zj:_& }waa(llg) }neN converges uniformly to up 4 € C(S).

Proof. Define u,, = %Z?:_& L?a(ﬂ §) for each n € N. Then {uy,},en is a uniformly bounded
sequence of equicontinuous functions on S by (M) and (53/) in Lemma . By the Arzela—

Ascoli Theorem, there exists a continuous function upg € C(S) and an increasing sequence

{n;}ien in N such that w,, = @p 4 uniformly on S as i — +oc.
To prove (), we note that by the definition of u,, and (6.3¢)) in Lemma 6.21, we have that
for each i € N,

~ ~ 1 . 1 ~
) = i = 2 L5 (1) ~ 1l < (@ 4 1)

where C' > 1 is the constant from Lemma depending only on f. C, d, ¢, and 5. By
letting ¢ — 400, we can conclude that HLFa(ﬂF@) —upg|,, =0. Thus (6.38) holds.

By (6.36), we have that C~! < 1,(%) < C for each n € N and cach 7 € S. Thus () follows.
By (6.34) and definition of @,, we have [, d(my, my) = [L1gd(mg, my) =1 for each n € N.
Then by the Lebesgue Dominated Theorem, we can conclude that

/HF,(b d(mp,mp) = lim [ @y, d(mg, my) = 1,

i—+00
establishing () Therefore, Ug 4(mp, My ) is a Borel probability measure on S. O

6.7. Invariant Gibbs measures. The goal of this subsection is to establish Theorem ,
namely, the existence of invariant Gibbs measures for subsystems of expanding Thurston maps.
We also investigate the properties of the eigenmeasures (of the adjoint split Ruelle operators)
from Theorem , with the main results being Propositions b.2d, 6.20, and p.28.

In this subsection, we follow the conventions discussed in Remarks kilﬂ and 6.14. In particular,
we use the notation mpg g (resp. (my, My )) for emphasis when we view the eigenmeasure as a Borel

probability measure on S (resp. ), and we follow the same conventions for 1 o (resp. (Ko, fw)),
where pip g = (o, fw) = Up,g(Mp, M) comes from Proposition .22,

Definition 6.23 (Gibbs measures for subsystems). Let f, C, F, d, ¢ satisfy the Assumptions
in Section H A Borel probability measure pu € P(S?) is called a Gibbs measure with respect to
F, C, and ¢ if there exist constants P, € R and C,, > 1 such that for each n € Ny, each n-tile
X™ e X"(F,C), and each x € X™, we have
1 p(X")

6.41 — < < O,
(641) C, = exp(SE¢(z) —nP,) H

One observes that for each Gibbs measure p with respect to F', C, and ¢, the constant P, is
unique.

Theorem 6.24. Let f, C, F, d, A, ¢, B satisfy the Assumptions in Section . We assume
in addition that f(C) C C and F € Sub(f,C) is strongly irreducible. Then the sequence

{% Z}Z& H"i«ﬂ@(ﬂg) }neN converges uniformly to a function Ury = (up,up) € COF (XE?, d) X
cos (X2,d) that satisfies

(6.42) Lpg(ure) =tpge  and

(6.43) Cl<upg() <C  forzelb,
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where C > 1 is the constant from Lemma depending only on f, C, d, ¢, and 3. Moreover,
if we let mp g = (Mp, Mup) be an eigenmeasure as in Theorem , then

(6.44) /~27F,¢ d(mp, mw) = 1,
S

and pipg = (fo, ) = Up,e(Mp, My) s an f-invariant Gibbs measure with respect to F', C, and
¢, with HF,(b(Q(FuC)) =1 and

N T
(6.45) PMF,¢ PmF¢ =P(F,¢) = Drgy = ngl_}_loo n log(LF,¢(1§) (@)’

for each y € S. In particular, pipg(U) # 0 for each open set U C S? with U N Q(F,C) # 0.

See (@) for the definition of P(F,¢). The proof of Theorem will be presented at the end
of this subsection.

We will show in Theorem that a measure p1r 4 as defined above is, in fact, an equilibrium
state for the map Fn = Flq and the potential ¢|g. We will also show in Theorem that

P(F,¢) = P(Fo, ¢).

Proposition 6.25. Let f,C, F, d, ¢ satisfy the Assumptions in Section . We assume in addition
that f(C) € C and F € Sub(f,C) is drreducible. Let mpg4 = (mp, mn) be an eigenmeasure as

in Theorem and upgy € C(S) be an eigenfunction of Lpg from Proposition . Let
pre = (Mo fiw) = Upp(me, mw). Then ury is an f-invariant Borel probability measure on S*.

Proof. By Proposition and Remark , we get pupg € P(S?). It suffices to prove that
<,up¢,g o fy = {upg, g) for each g € C(S?). Indeed, it follows from (Q) and (@) that for each
hec(S), -

L5 (@0 1) = gLy (h),
where § is a continuous function on S defined by §(#) = g(z) for each # = (z,¢) € S, and
g/c:?" eC (§ ) is defined similarly. Then by (M) and (@), we deduce that for each g € C(5?),

(rgr 90 f) = ((Hos i) g 0 f)
(mp, My), UF¢>(9/S/f)>

L7 M, My ) up¢(gof)>

M, M), G L 5 (1))
( bamm) F¢>
F¢(mbamm) >
= (1Fg: 9)- u

Proposition 6.26. Let f, C, F, d, ¢ satisfy the Assumptions in Section . We assume in
addition that f(C) C C and FiSub(f,C) is strongly irreducible. Let mpg = (mp, mw) be_an

eigenmeasure as in Theorem |6.16 and urg be an eigenfunction ofIL = from Proposition [6.24.

=

=

((my, o), Lip5(@ipo(g 0 £)))
((m

(

= (u

Denote jup,g = (1o, tro) = Upg(me, mw). Then mpg (U725 £79(C)) = ,UF¢( =0 f7(C) = 0.

Proof. By Proposition , the measure ppy € 77(52) is f-invariant. Note that C C f~7(C) for
each j € N, Thus we have p F¢( 3(C)\C) = 0 for each j € N. Since F is strongly irreducible, by
Definition , for each ¢ € {b,w}, there exists an integer n. € N and X, € XI<(F,C) such that
X.NnC=0. Then 0X. C f7™(C) \ C for each ¢ € {b,10}. So pups(0X.) = 0 for each ¢ € {b,w}.
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Since g :ﬁ,um) = Up,¢(Mp, My ), Where gy € C(S) is bounded away from 0 by () in
Proposition we have mp 4(0X.) = (mp, mp)(0X,) = 0 for each ¢ € {b,w}.

We next show that mpy(C) = pupe(C) = 0. For each ¢ € {b,w}, it follows from Proposi-
tion that F"¢|gx, is a homeomorphism from 0X. to C. Then for each ¢ € {b,w}, by

\ A
Proposition [5.15 - m we have

0=mpe(0X)= Y. /deg (F™,-)exp(Sp,0)) o (F™[ax,) " dms
se{b,w}

> [ Gem (™, exp(SE6)) o (7l i

z /(exp(sfcé)) o (F™gx,) " dme
C

2 exp(—nc[|¢lloc)112¢(C)
>0,

where the second inequality holds since deg.(F"<,y) > 1 for each y € 90X, C X, € X(F,C).
Thus mp,g(C) = (mp, mw)(C) = m4(C) + mw(C) = 0. This implies 4up4(C) = 0.

Finally, since pp(f~7(C)\ C) = 0 for each j € N, we have that MF¢>(Uj:OS f79(C)) = 0. This
implies mp 4 ( ]:08 f79(C)) = 0 and finishes the proof. O

Definition 6.27 (Jacobian). Let f, C, F satisfy the Assumptions in Section H Consider a Borel
probability measure p € P(S%) on S2. A Borel function J: dom(F) — [0,+00) is a Jacobian
(function) for F' with respect to p if for every Borel A C dom(F') on which F' is injective, the
following equation holds:

(6.46) W(F(A)) = /A Jdp.

Proposition 6.28. Let f, C, F, d, A, ¢, B satisfy the Assumptions in Section . We assume
in addition that f( ) € C and F € Sub(f,C) is strongly irreducible. Consider an arbitrary

= (o, ) € P(S ) If Ly (1o, o) = K(po, pino) for some constant k > 0, then the following
statements hold:

(i) The function J: dom(F') — [0,4+00) given by J := kexp(—¢) is a Jacobian for F with
respect to [.

(ii) The measure p is a Gibbs measure with respect to F', C, and ¢ with P, = P(F, $) = log k.
Here P(F, ¢) is defined in (@) from Subsection |6.4. In particular, > xnexn(re) MX™) <
2.

(iii) The map Fq = F]Q(F,c) with respect to p is forward quasi-invariant (i.e., for each Borel
set A CQ(F,C), if u(A) =0, then u(Fo(A)) = 0) and non-singular (i.e., for each Borel
set A C Q(F,C), if u(A) = 0, then p(Fy*(A)) =0).

Proof Assume that L%, , (e, tiv) = £(p, i) for some constant x > 0.

i) By Proposwlon , for each Borel A C dom(F") on which F' is injective, we have that
F(A) is Borel, and

A) =LY i) (A) = k71 deg (F,-)ex o (F|a) ' due.
H(A) 2t ) (4) {g} /F B 0] o (Fl)

Since F' is strongly irreducible, it follows from Proposition that u(C) = 0. Thus ue(C) =
tio(C) = 0. Note that deg,(F,y) = 1 for each ¢ € {b, 1w}, each x € inte(X), and each y € F~*(x).

0
c
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Thus by () we have
Ly / exp(6) o (Fla)~" due
nxg

(647) CG{[J m}
1

=x" Fla)~td :/ ——dy,
K /F(A)eXp(gb)o( |A) L F(A)JO(F’A)_I L

where the function J is given in .

Since F is injective on each 1-tile X! € X!(F. and both X! and F(X') are closed subsets
of S? by Proposition m in order to ver1fy i it suffices to assume that A C X for some
1-tile X € X!(F,C). Denote the restriction of p on X by pux, i.e., ux assigns u(B) to each Borel
subset B of X.

Let 1z be a function defined on the set of Borel subsets of X in such a way that u(B) = u(F(B))
fach Borel B C X. It is clear that 1 is a Borel measure on X. In this notation, we can write
6.47) as

(6.18) ux(4) = | S0

P

for each Borel A C X.

By (), we know that px is absolutely continuous with respect to ji. On the other hand,
since J is positive and uniformly bounded away from 4+occ on X, we can conclude that g is
absolutely continuous with respect to px. Therefore, by the Radon-Nikodym theorem, for each
Borel A C X, we get u(F(A)) = i(A) = [,J|xdux = [,Jdp. Thus we finish the proof of
statement (1)

We observe that

Km
6.49 W(F™(B)) = /
(0:49) U= (S
foralln € N, m € {0, 1._..., n}, and Borel set B C dom(F) on which F" is defined and injective.
Recall from Definition that F™ is defined at z_€ dom(F') if and only if F*(x) € dom(F) for
each i € {0, 1, ..., n — 1}. Indeed, by statement , for a given Borel set A C dom(F') on which

F' is injective, we have

k(go F)
dpu= | —=——=d
/F(A)g a /A exp(@)

for each simple function g on dom(F'), thus also for each integrable function g.

Fix arbitrary n € N and Borel set B C dom(F') on which F" is defined and injective. We
establish @) for each m € {0, ..., n} by induction. For m = 0, (@) holds trivially. Assume
that () is established for some m € {0, ..., n — 1}, then since F™ is injective on F'(B), we
get,

1 KM K;m+1
uw(F™(B)) = / / —dpu.
)= iy b = S 0B
The induction is now complete. In particular, by Proposition @ ,

(6.50) u(em ) = |

e exp(5a0)

for all p. € N and X" € X™(F.C).
By (@) and Lemma , for all n € Ng, X" € X"(F,C), and x € X", we have

(6.51) CuF"(X™)) < K"u(X")/ exp(Snd(x)) < “p(FM(X™)),

HTL
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where C' = C1(diamg(S?))? > 0 and C) is the constant defined in () in Lemma b.24 and
depends only on f, C, d, ¢, and 3. Note that F"(X™) € X(F,C) is either the black O-tile X or
the white 0-tile X. We claim that for each ¢ € {b, v},

(6.52) p(X2) > (14" expln(s, )| 8]))

where s € {b,w} \ {c} and n(s,¢) € N is given by Definition 5.15. Indeed, since F is irreducible,
by Definition , for s € {b,w} \ {c} and n(s,c) € N, there exists X0 ¢ xnleo) (F,C) such
that X9 C X0 and Fnc) (Xsn(ﬁ’c)) = X?. Then it follows from () that

e Op(X0) < 59 exp(n(s, )| dloo )t (X2 V) < £ exp(n(s, ¢)[|¢ o) (X0).

This implies () since 1(X?) + pn(X?) = pu(S?) = 1. Hence () holds, and p is a Gibbs
measure with respect to F', C, and ¢ with P, = logk.
Finally, we show that P, = P(F,¢). By Theorem , we have that for each n € N,

(6.53) S XT) > uQFC) = 1.
XneXn(F,C)

Since p is a Gibbs measure with respect to F, C, and ¢ with P, = logk, it follows from ()
that for each n € Ny,

> wXM<Cue ™ YT exp(sup{Spg() s w € X))
Xnexn(F,.C) Xnexn(F,C)

for some constant C, > 1. Combining this with (), we obtain the inequality P, < P(F, ¢). For
the other direction, since F' is strongly irreducible, by Theorem , we get u( ;08 ~J(post f )) =
0. Then it follows from Remark and Proposition M that

Yo < M(U %”(F,C)) + M(DO F‘j(C)> <1
=0

Xnexn(F,C)
By (), we have that for each n € Ny,
Z w(X™) = C;le_"P“ Z exp(sup{Spo(z): x € X"}).
Xnexn(F,C) Xnexn(F,C)

This implies that P, > P(F, ¢). Thus we get P, = P(F, ¢) and finish the proof of statement .

Denote 2 := Q(F,C). Fix a Borel set A C Q with u(A) = 0. For each 1-tile X! € X!(f,C),
the map Fg is injective both on AN X' and F5'(A) N X! by Proposition . Then it follows
from the definition of the Jacobian (recall (@)) and statement {i) that pu(Fo(ANX1)) =0 and
w(Fo'(A) N X1 = 0. Thus pu(Fo(A)) = 0 and u(Fy'(A)) = 0. This implies that Fy is forward
quasi-invariant and non-singular with respect to p. O

Now we can prove the existence of an f-invariant Gibbs measure with respect to F', C, and ¢.

Proof of Theorem . Let mp gy = (Mmp, myp) be an eigenmeasure as in Theorem .

Define, for each n € N, @, = ?;01 ]L;f(]lg). Then {u,}nen is a uniformly bounded

sequence of equicontinuous functions on S by (6.3 ) and (EB() in Lemma . By the Arzela—
Ascoli Theorem, every subsequence {uy, }ren, which is a uniformly bounded sequence of equicon-

tinuous functions on S, has a further subsequential limit with respect to the uniform norm. By

Proposition .22, the sequence {Un }nen has a subsequential limit ug 4 € C(S) satisfying (),
(), and () In order to prove this theorem, it suffices to show that iﬂl }nen has a unique
O [=(

subsequential limit with respect to the uniform norm, and finally justify ()
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Suppose that U is another subsequential limit of {u; }nen With respect to the uniform norm.
Then 5F¢ is also a continuous function on S satisfying (@), (), and () by Proposi-
tion . To prove the uniqueness, it suffices to show that ur g4 = vp4 on S = Xy i X V. The
proof proceeds in two steps. We first show that urg4 = vrg on a subset Q (deﬁned in ()

below) of §, which satisfies (myp, mm)(ﬁ) = 1. Then we extend this identity upy = Vg4 to S.
For each n € Ny, we set

(6.54) X'(FC) = | {i(x"):X"ex(F,C), X" C X0},
ce{b,w}
where i, is defined by () Let Q be the subset of S defined by
(6.55) Q= Jx"F.o0).
neN

We claim that (mp, My (§~2) = 1. Indeed, since (mp, my) is an eigenmeasure of L}, o it follows
from Proposition (.15 and induction on n that for each n € N,

12 (myme) (| JE(F,€)) = (mo, ma) (| JE(F.C) ) = (o, mu)(8) = 1,
where we use the fact that |JXO(F,C) = S since F is irreducible so that F'(dom(F)) = S2. Note
that by Proposition @ . and @ ) {U %"(F,C)}n cy 18 a decreasing sequence of sets. Thus,
by (@), we get

(e, M) (Q) = lim (mb,mm)<U5€”(F,C)> ~ 1.

n—+oo

Now we show that Up (%) = up4(Z) for each T € Q. Let
t =sup{s € R: Upgy(Z) — sUp(T) > 0 for all T € §}

It follows from () that ¢ € (0, +00). Then there is a point § € S such that Upg(y) —tipe(y) =
0. Without loss of generality, we may assume that y = (y, b) for some point y € X[?. By (6.4)
(6.7), and the equality
Lrg(Urg — trg) = Urg — tUre,
which comes from (), we get that g () —tvpe(Z) = 0 for each z € F~1(7)), where we define
~"(y) to be the set

(6.56) {(z0) s 2= (F"xp) " (y), Xit € Xp(F,C), ¢ € {b,10}}.

for each n € N. Inductively, we can conclude that up (Z) — tvpe(Z) =0 for all 7 € ey Fi(7).
Noting that F' is irreducible and mimicking the proof of Proposition p.2( (i), we can show that

the closure of (J;c F~i() in S contains Q. Indeed, by (@l), (@), and (ﬁ), it suffices to
show that for each n € N and each X" € X"(F,C), X" N Uien F~i() # 0. Fix arbitrary n € N
and X" € X"(F,C). By (), there exist ¢ € {b, 10} and X" € X"(F,C) such that X" C X? and
X" = ic(X™). By Proposition @ , X" is mapped by F™ homeomorphically to a 0-tile X2 for
some s € {b,tv}. Since F is irreducible, by Definition , there exist k € N and Y* € XF(F.,C

such that Y* C Xs0 and F* (Yk) X0 Then it follows from Lemma @ and Proposition @'i

that X* = (F"|xn)"1 (Y ) i{lgj"(F C). Denote z = (F*™|yi1n)"L(y) € X**™. Then by
() we have (z,¢) € Ujen FH (@) Slnce z € Xktn C Xn C X0 we have (z,¢) € X" N
Usen F(9) # 0. Thus the closure of | J;cy F~4(¥) in S contains Q. Hence U Upg = tUp,e On Q.
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Since both g4 and U ¢ satisfy () and (my, my)(Q) = 1, we get £ = 1. Thus Upe(T) = Upe(T)
for each 7 € Q.

Following similar arguments to those in Proposition - we can show that N X" #* @
for each n € N and each X" € X"(F,C). The key idea is that for any tile X" € X"(F,C), w
can construct a nested sequence of tiles by leveraging the irreducibility of F' and the 1nJect10n
ic as defined in () This nested sequence has a non-empty intersection, which implies that
anxn # (). More precisely, glven X" = (X™) for some ¢ € {b,w}, the irreducibility of F" allows
us to find tiles that map onto X0, enabling us to construct a nested sequence { X "+km}keNO whose
images under i, yield a point in QnXxn.

We next show that @p g4 = Vg4 on S. Recall for each ¢ € {b,10}, upy and Up 4 are continuous
on X! and X! is compact. Fix an arbitrary number € > 0, then we can choose § > 0 such that for
each ¢ € {b, m} and each pair of points z, y € X with d(:v y) < J, we have |u —upg(y)| <e
and |[Up(T) — Vpg(y)| < €, where Z = (z,¢) and y = (y,¢). By Lemma ﬂ , there exists
n € N such that for each X" € X"(F,C), diamg(X™) < d. We fix such an integer n in the rest

of this paragraph. We also fix an arbltrary point ¥z, € Qnx" for each X" e %”(F C). Since

there is a natural bijection X" X" between X"(F,C) and %” , we can define yy» = yg,
for each X" € X"(F,C). Hence by (@), (@) Prop031tlon (i) and Definition @, for each
¢ € {b,1wv} and each T = (z,¢) € z'c(XP),

iR (Z) = Upp(@)] = [Ly5(Urg — Ure) (@)
< Z |uF7¢(xXn) — ’6F,¢(%Xn)| eXp(Snd)(:EXn) — anF@)
XneXr(F,C)

<Cnry Y ([Tre(@xn) = Tro@xe)| + [Aro(Fxn) — Tro(Fxn)]
Xnexr(F,C)

+ [P ([ixn) = P (@xn) | ) ms (X™)
< CmF#, Z 2€mF,¢(Xn)

Xnexn(FC)
< 4eCmp s

where we write zyn = (F"|xn) 1(z) and Txn = (zxn,5) with s € {b, 10} uniquely determined
by the relation X" C X{. Since ¢ > 0, ¢ € {b,10}, and T € i (X) are arbitrary, we conclude
that aF,(p = 5F,¢ on g

We have proved that u,, converges to ur 4 uniformly as n — +oo.

It now follows immediately from (6.36), (6.37), and the uniform convergence of w, that 4 €

COP(XP,d) x COB(XY, d)
By Proposition , WFg is f-invariant. Since mp 4 is a Gibbs measure (Wlth respect to F', C
and E Isupported on Q Wlth P = P(F,¢) = Dp4 by Proposition p ) and ( ) then

by (6.43) and Prop081t10n , lFe is also a Gibbs measure (with respect to F C and ¢)
supported on Q with P, = PmF o = P(F,¢) = Dpg = im0 1 log(L, +(13) @)) for each

7 € S, establishing ()
Finally, let U C S? be an open set with U N Q # (). Then by (@) and (), there exists
Xk e x¥(F,C) with X* C U for some k € N. Since pp is a Gibbs measure, we get pup4(X*) > 0.

Thus ppg(U) > pre(XF) > 0. O



50 ZHIQIANG LI, XIANGHUI SHI, AND YIWEI ZHANG

Remark. By an argument similar to that in the proof of the uniqueness of the subsequential limit
1 n—1y 7 ~ ~ . . . .
of {5 ijo LF@(]IS) }neN’ one can show that ur 4 is the unique eigenfunction, up to a scalar

multiple, of L 3 corresponding to the eigenvalue 1.

6.8. Variational Principle and existence of the equilibrium states for subsystems. In
this subsection, we prove the main results Theorems @ and .30 of this subsection.

In the following theorem we establish the Variational Principle for strongly irreducible subsys-
tems with respect to Holder continuous potentials. Recall that F(©2) C © by Proposition
andFQ:F’Q:Q—}Q.

Theorem 6.29. Let f, C, F, d, ¢, B satisfy the Assumptions in Section . We assume in
addition that f(C) C C and F € Sub(f,C) is strongly irreducible. Then we have

(6.57) mwzﬂﬂw=Pw@mm:wﬁm&m+[fmuueMmfm}

uﬁr@ Dr g is defined in Corollary , P(F, ¢) is defined in (@), and P(Fq, ¢|q) is defined in
(B.1).

The following theorem gives the existence of the equilibrium states for strongly irreducible
subsystems and Holder continuous potentials.

Theorem 6.30. Let f,C, I, d, ¢, B satisfy the Assumptions in Section . We assume in addition
that f(C) C C and F € Sub(f,C) is strongly irreducible. Then there exists an equilibrium state for
Fq and ¢|q. Moreover, any measure [ipg € M(S?, f) defined in Theorem is an equilibrium
state for Fo and ¢|q, and the map Fo with respect to such ppy is forward quasi-invariant (i.e.,
for each Borel set A C Q, if pp4(A) =0, then ppy(Fo(A)) =0) and non-singular (i.e., for each
Borel set A CQ, if upg(A) =0, then pp4(Fy ' (A)) =0).

The proofs of Theorems and ﬂ will be given at the end of this subsection. Note that
Theorem follows immediately from Theorems .29 and b?)d
We use the following convention in this subsection.

Remark 6.31. Let X be a non-empty Borel subset of S2. Given a Borel probability measure
u € P(X), by abuse of notation, we can view p as a Borel probability measure on S? by setting
p(A) = u(ANX) for all Borel subsets A C S2. Conversely, for each measure v € P(S?) supported
on X, we can view v as a Borel probability measure on X.

Proposition 6.32. Let f, C, F, d, ¢ satisfy the Assumptions in Section . We assume in
addition that f(C) C C. Then for each Fo-invariant Gibbs measure p € M(S, Fq) C P(S?) with
respect to F', C, and ¢, we have

(6.59) mgm@m+4mm<mmwm,

where P(Fq, ¢|q) is_the topological pressure of the map Fo = F|q:  — Q with respect to the
potential ¢|lq (see (@))

Recall that F/(©2) C Q by Proposition @ .

Proof. Note_that the second inequality in () follows from the Variational Principle (@) in
Subsection B.1.

We now use the measurable partitions O,, n € N, of S? that were defined in () Since
f(C) CC, it is clear that Oy is a refinement of Oy for k > ¢ > 1. Observe that by Proposition B. (i
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and induction, we can conclude that for each n € N,
n—1

(6.59) \ F7(0y) =
=0

For n € N, we define 5n ={UNQ:U € 0,}, which is a measurable partition of Q. Noting that
Fo'(A) = Qn f~1(A) for each subset A C Q, it follows from () that for each n € N,

n—1
(6.60) \/ F3’(01) =
j=0

Let u € M(, Fg) C P(S?) be an Fg-invariant Gibbs measure with respect to F, C, and ¢.
Then by the Shannon-McMillan-Breiman Theorem (see for example, [PU10, Theorem 2.5.4]),

we have hu(Fg,al) = [Frdp, where

n—-+oo n

Fr:= lim —I <\/ FQ (O1) ) p-a.e. and in L' (u),

hu(Fo, 61) is defined in (@), and the information function I, is defined in (@)

Note that for all n € N, U € Oy, and X™ € X"(F,C), either UN X" =0 or U C X™.

For n € Ny and = € 2, we denote by X" (z) € X"(F,C) any one of the n-tiles of F' containing x.
Recall that O, (z) denotes the unique set in the measurable partition O,, that contains z. Since
On(z) € X™(z), we have that

1,(0n) (@) = —log (1(On(2))) = —log(u(X"(x))).
Then by () and () we deduce that

[Erau= [ i L1, (\/ 01)) (@) du(o)

]:

:/ lim 7 (0, (z) dp(z)

n—+oo n

> lim sup/i[u (6n) (x)dp(z)

n—-+4o0o

> lim sup/—i log(p(X™(2))) du(z)

n—-+oo
/nPM — SEo(z) —log C,

> limsup
n—-+0oo

=P, - hm 1nf — /Sggb(az) dp(z)

-p, /cbdu,

where the last equality follows from (@) and the identity [¢oFqdp = [¢ du for each ¢ € C(Q),
which is equivalent to the fact that p is Fo-invariant. Since O is a finite measurable partition,
the condition than H,(O;) < +oc0 in (@) is fulfilled. By ( @ we get that

u(Fo) > hy(Fo. O0) > Py — [ odn
Therefore, P, < hy(Fa) + [¢dp. O

dp(z)

n
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Proposition 6.33. Let f, C, F satisfy the Assumptions in Section .

(i) If p € P(S?) is f-invariant and is supported on Q(F,C), then u is Fo-invariant, i.e.,
u(A) = M(Fgl(A)) for each Borel subset A of Q.

(ii) If measure p € P(Q) is Fo-invariant, then p € P(S?) is f-invariant. Moreover,
M(, Fo) € M(S%, f).

Recall that F(Q) C © by Proposition @ . We use the convention in Remark .

Proof. (i)} Assume that pu € P(S?) is f-invariant and is supported on Q(F,C). Let A C Q be an
arbitrary Borel subset. Noting that (F|q)~1(A) = QN f~1(4), we have

p(EqH(A) = (2N f7HA) = u(F7H(A) = w(A).
Thus p is Fg-invariant.
Assume that pu € P(Q) is Fo-invariant. Let A C S? be an arbitrary Borel subset. Noting
that (Flo) 1 (ANQ) =N f~1(A), we have
p(F7HA) = p(@0 7)) = p(F7 (AN D) = W(AN Q) = p(4),
Thus p is f-invariant. O

Proposition 6.34. Let f, C, F, d, A satisfy the Assumptions in Section . We assume in
addition that f(C) C C and F € Sub,(f,C). Consider ¢ € C(S?). Then

(6.61) P(F,¢) > P(Fa, ¢la),

where P(Fq.plq) is the topological pressure of the map Fq: Q — Q with respect to the potential
ol (sce (b))

Recall that F'(Q) C © by Proposition @ and Fqg = Flq.
Proof. By (@), it suffices to show that

1
(6.62) P(F,¢) > lim limsup — log(Na(Fa, ¢la,€,n)),

e=0T n—s+too M

where

Na(Fo, ¢la,e, m) = sup{z exp(Sflgo(x)) : E CQis (m,e)-separated with respect to FQ}
el

For fixed € > 0 and n € N, by Lemma , we have
(6.63) diamg(X™) < CA=™+) for all i € Ny and X" € X"+(F, (),

where C > 1 is the constant from Lemma . Let k = k(e) be the smallest non-negative integer
satisfying CA~ (1) < ¢, Let E C Q be an arbitrary (n, ¢)-separated set (with respect to Fq). For
each z € E, let X"*%(x) be an element of X"**(F,C) containing . Next, we prove that the map
x +— X"*(z) is injective by contradiction. Suppose this map is not_injective, i.e., there exist two
distinct points x, y € E such that X"+*(z) = X"*+*(y). Then by () and Proposition 5.4 (i),
we have

d(F'(z), Fi(y)) < diamd(Fi (XnJrk)) < CA-(Hh=) < op—(ktD) ¢
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for each ¢ € {0, 1 ..., n —1}. This contradicts the fact that £ C Q is (n,e)-separated. Hence
the map 2 — X"**(2) is injective. Thus,

Z exp(Sgcp(:z)) < Z exp(sup{Sffcp(x) tx € X"+k})
z€E Xntkexntk(F,C)

< Z exp (k| ¢l + sup{SE, po(z) 1 2 € X"}
Xntkexntk(F,C)
= Mol Z, (P,
Noting that the above inequality holds for every (n,e)-separated set E C ) since k = k(e) is

independent of F, we can take the supremum of the left-hand side of the above inequality over
all (n,e)-separated set in 2. Then it follows from Lemma that

k[l oo Lt klog(Znik(F, )
n n n+k

1
hmsup*lOg(Nd(FQa@|Qa€> TL))< lim <
n

n—+00 n—+0o0

> = P(F, ).

Note that Ny(Faq,¢|qa,&, n) increases as € decreases. By letting e decrease to 0, we establish
() and finish the proof. O

Proof of Theorem . Let P(Fq, ¢|a) be the topological pressure of the map Fq: 2 — 2 with
respect to the potential ¢|g. Then it follows from the Variational Principle (see (B.§)) that
P(Fq, ¢la) = sup{hu(Fa) + [oddu : p € M(2, Fq)}. By Proposition 5.34, we have P(F,¢) >
P(Fq, ¢|lq). Thus, it suffices to show that D4 = P(F,¢) < P(Fo, ¢|a).

Let purg € P(S?) be an f-invariant Gibbs measure with respect to F, C, and ¢ with pp4(2) = 1
and P,,, = P(F,¢) = Dpy from Theorem . By Proposition @‘, pre is Fo-invariant.
Thus, by abuse of notation, we have prg € M(S, Fq). Then it follows from Proposition
that P(F,¢) = P, < P(Fa,¢|a). The proof is complete. O

Proof of Theorem . Consider an f-invariant Gibbs measure jr4 € M(S?, f) with respect to
F,C, and ¢ with ups(Q2) =1 and P, , = P(F,¢) from Theorem . Then by Proposition m
and the Variational Principle (see (@), we have P, , = P(Fq, ¢[a). By Theorem , W is
Fo-invariant. Thus by abuse of notation we have g4 € M(Q, Fo). Then it follows from Propo-
sition that P, = hup,(Fa) + Jo®durg = P(Fa,¢|la). Therefore, upq is an equilibrium
state for Fp and ¢|q. The fact that Fg is forward quasi-invariant and non-singular with respect
to pr,e follows from () in Theorem and Proposition . 0

Proof of Theorem . The statement follows immediately from Theorems and . O

7. LARGE DEVIATION ASYMPTOTICS FOR EXPANDING THURSTON MAPS

Thurston maps. In Subsection [7.1], we investigate the rate function, presenting Proposition

as our main result, which outlines several properties of this function. In Subsection , We
discuss pair structures related to tile structures induced by expanding Thurston maps. These are
essential for constructing suitable subsystems discussed in Subsection [7.3. Subsection focuses
on proving key bounds outlined in Proposition . This proof relies on the distortjon estimates
and thermodynamic formalism for subsystems we established in Sections f and [j. Finally, in
Subsection @, we apply the key bounds from Proposition [7.15 to establish Theorem [1.2.

In this section, we establish _the large deviation asymptotics (Theorem Q) for expandiﬁ
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7.1. The rate function. In this_subsection, we are going to prove the following results about
the rate function I as defined in ([L.3). The proof will be given at the end of this subsection.

Proposition 7.1. Let f : S? — S? be an expanding Thurston map and d be a visual metric
on S for f. Let ¢ € C%8(S2%,d) be a real-valued Hélder continuous function with an exponent
B € (0,1] and not co-homologous to a constant in C(S?). Let py be the unique equilibrium

state for the map f and the potential ¢. Denote vy = [¢ddus, tumin = m(iqul2 )fqb dy, and
HEM(S?,f
Omax = Iax du. Then the following statements hold:
w = max Jodu f g
(i) Y6 € (Qmin, Mmax). In particular, the closed interval Ly = [Otmin, max| cannot degenerate

into a singleton set consisting of 4.
(ii) For o € (umin, Omax)s

I(a) = P(f,¢) = P(f. ()" (a)¢) + (') () = Ve,
where the function p: R — R is defined by p(t) = P(f,tp).

(iii) The rate function I: [oumin, Omax] — [0, +00) is twice differentiable and strictly convexr on

(Omin, max). Moreover, I(ca) = 0 if and only if @ = ~y. Furthermore, lim I'(a) =
O—>Qmin

—o0 and lim I'(a) = 4o0.
Q—>Qmax

The graph of the rate function I is shown in Figure @
I(OZ) 4

: . : r o
Qmin Yo Qmax

FIGURE 7.1. The graph of the rate function I.

Let f: S? — S? be an expanding Thurston map and d be a visual metric on S? for f. If ¢ is a
Hélder continuous function on S? with respect to the metric d, then there is a unique equilibrium
state for f and ¢ (recall Theorem ); we denote it by f4.

Two continuous functions ¢ and 1 are called co-homologous in C(S?) (with respect to f) if

there exists a continuous function u € C(S?) such that ¢ — ¢ =uo f —u.
For a continuous function ¢ € C(S?), we define

Z,:= {/cpd,u RS M(S2,f)}.
Note that Z,, is a connected closed subset of R. For each o € Z,, we define
(7.1) Hy(a) = sup{hu(f) p € M(S?, f) with /qﬁdu = a}.

The following lemma is an analog of [SS22, Lemma 3.3]. The proof is essentially the same, and
we include it for the convenience of the reader.
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Lemma 7.2. Let f, d, ¢, V¢, Qmin, Omax salisfy the Assumptions in Section . We assume in
addition that ¢ is not co-homologous to a constant in C(S?). Then vy € int(Zy) = (Cmin, Cmax)
and for each o € (umin, Omax), there exists a unique number § = £(a) € R such that Hy(a) =

e (f) and

dP(f,t¢)

(7.2) T

/qbdufqb—a
t=¢

Here pey is the equilibrium state for f and ¢. Moreover, the supremum in (@) s uniquely
attained by pieg.

Proof. We write p(t) := P(f,t¢) for t € R for convenience. Then it follows from Theorem B.15 m
that p'(t) = [éduy for t € R. It is a standard fact_that the function p: R — R is twice
differentiable (the proof is verbatim the same as that of [PU10, Theorem 5.7.4]). Moreover, since
¢ is not co-homologous to a constant, the function p is strictly convex (see [PU10, Theorem 2.11.3]
r [DPTUZ21, Theorem 1.1]).
Now we consider the set

D::{p’(t):teR}:{/¢dut¢:teR}gI¢.

Here D is an open interval since the function p is twice differentiable and strictly convex. Then
we have 74 € int(Zy) = (Qmin, umax) since v, = p'(1) € D.

By the definition of pressure, for all t € R and p € M(S?, f), p(t) = hu(f) +t [¢du. In
particular, the graph of the strictly convex function p lies above a line with slope [¢ du (possibly
touching it tangentially) so that [¢du € D. Since u € M(S?, f) is arbitrary, we have Z, C D.
Then it follows that D = int(Z,). Note that the function p’: R — R is differentiable and strictly
increasing Thus for each a € int(Zy) = p/(R), there exists a unique number § = £(a) € R
with « = [¢dugs. Since pgy is the unique equilibrium state for f and £¢ (recall
Theorem , we have, for any u € M(S?, f) with u # g, Ppes (f) + & [oduey > hyu(f) +
¢ [¢pdu. In partlcular, if [¢pdu = a then hy.,(f) > hu(f). This means that the supremum
in (a; is uniquely attained by hy,,. Therefore, gy is the unique measure with the desired
properties. U

Corollary 7.3. Let f, d, ¢, V¢, Qmin, Omax satisfy the Assumptions in Section . We assume
in addition that ¢ is not co-homologous to a constant in C(S?). Let £: (Qmin, @max) — R be the
function defined via Lemma . Then this function &: (Qmin, @max) — R is differentiable and
strictly increasing. Moreover, we have §(v4) =1 and lim &(a) = —oo, lim {(a) = +oo.
a—>aumin T Q—Qmax
Proof. We write p(t) = P(f,t¢) for t € R. Then the function p: R — R is twice differentiable
and strictly convex. Note that it follows from Lemma @ that £(a) = (p')~(«) for each a €
(Qmin, @max ). Therefore, the function &: (Qmin, ®max) — R is differentiable and strictly increasing,
and lim {(a)=—-o00, lim ¢(a)=+oc.

a—Qmint Q—Qmax
For o = 4, by (@), we have
Hy(vg) = sup{ /sbdu pe M(S? f /(ﬁdu ’w} Ve

(f ¢) Yo = (f) X H¢>(’Y¢) - hug(7¢)¢(f)'
Thus hy,(f) = h“é(ww(f) = Hy(vg). Therefore, it follows from Lemma @ that £(v¢) =1. 0O

Now we can prove Proposition @
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Proof of Proposition . Statement (i) follows immediately from Lemma @
Fix arbitrary o € (min, ®max)- By Lemma and ([7.1)), we have

Hy(@) =y, (f) = P(f, €(@)9) = E(a)a.
Thus we get
I{e) = P(f,¢) — o= Hy(a) = P(f,¢) = P(f,£(a)¢) + (§(a) — Da
by the definition of the rate function I (see (@)) By Lemma @, we have &(a) = (p/) ).
Hence, statement holds.

Let o € (umin, Omax). We write p(t) := P(f,t¢) for t € R. Then the function p: R — R is
twice differentiable and strictly convex. By statement , we can write I(«) as

(7.3) I{a) = p(1) — a + &(a)a — p(§(a)).

Then it follows from Corollary B that the rate function I is differentiable on (aumin, Qmax)-
Differentiating the rate function I(«) with respect to o and noting that p’(¢(«)) = a (Lemma @),

we obtain I'(a) = —1 + &(a)a + &(a) — p'({(a))f (o) = &(a) — 1. Thus by Corollary [7.3, [_is

twice differentiable and strictly convex since I”(a) = £'(«) > 0, and it follows from Corollary

that  lim +I’(a) = —ocand lim [I'(a) = 4+o0o. Moreover, since {(74) = 1 and I'(y4) = 0,

O—>Qmin o ax
by the strict convexity of I and @), I(o) = 0 if and only if o = 4. O

7.2. Pair structures. In this subsection, we discuss pair structures associated with the tile
structures induced by an_expanding Thurston map, which will be used to build appropriate
subsystems in Subsection [7.3.

Definition 7.4 (Pair structures). Let f, C, " satisfy the Assumptions in Section H For each
n € N, we can pair a white n-tile X3 € X{j and a black n-tile X;* € Xj’ whose intersection
XN X[ contains an n-edge contained in f~"(e”). We call X?U X[ an n-pair (with respect to f,
C, and €°), and define the set of n-pairs (with respect to f, C, and ), denoted by P"(f,C,e°),
to be

(74)  P"(f.C,e%) = {XPUX{: X2 eXp, X € Xp, XpnXyn (%) e EM(£,0)}.

Figure @ illustrates the structure of n-pairs. There are a total of (deg f)™ such pairs, and
each n-tile is in precisely one such pair (see Lemma [7.G).

D"(f,C) D(f,C)
REEEE -
60

FIGURE 7.2. The graph of n-pairs.

Remark 7.5. For each integer n € N, one sees that f"(P") = S? for each n-pair P" €
P"(f,C,e%). This basic property is crucial for our constructions and proofs in this section (for
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example, see Proposition ) Indeed, this is the main reason why we define and use the pair
structures.

From now on, if the map f, the Jordan curve C and the 0-edge € are clear from the context,
we will sometimes omit (f,C,e") in the notation above.

Lemma 7.6. Let f, C, €¥ satisfy the Assumptions in Section . Then for each n € N and any

two distinct n-pairs P™, P™* € P™, their interiors are disjoint.

Proof. We argue by contradiction and assume that there exist two distinct n-pairs P” pn e pr
for some n € N such that their interiors intersect. Then it follows from Lemma @ that

their intersection contains an n-tile X™ € X™. Since P"™ # ﬁ”, Remark implies that X"
contains two distinct n-edges ", e" € E"(f,C) satisfying f(e") = f™(¢") = €°, which contradicts
Proposition i). [l

Corollary 7.7. Let f, C, €° satisfy the Assumptions in Section . Then for each n € N, we have
UP" = S? and card(P") = (deg f)".

Proof. For each n-tile X™ € X", by Proposition @ and the definition of P", there exists an
n-pair P*_€ P" such that X® C P". Thus S? = JX" C JP" and we get [JP" = S?. By
Lemma @ and Proposition @ , we have card(P") = card(X")/2 = (deg f)". O

Lemma 7.8. Let f, C, €° satisfy the Assumptions in Section . ThenP*(f7,C,e%) = Pk (f,C,€0)
for each n, k € N.

Proof. Tt follows immediately from Proposition @ that Pk(f",C,e%) = P (f,C,¢e0%) for
n, k€ N. O

We formulate the next lemma to prove Lemma . Recall U™ (z) is the n-bouquet of x (see

(B.11).

Lemma 7.9. Let f, C, d, €° satisfy the Assumptions in Section . We assume in addition that
f(C) C C. Then there exists an integer M € N depending only on f, C, d, and €° such that for
each color ¢ € {b,w}, there exists an M-pair PCM e PM such that for each integer n > M and
each x € PM, we have U™(z) C inte(X?).

[

Proof. We first show that there exists an integer m € N satisfying the requirements, then let the
integer M be the smallest one among all such integers so that M depends only on f, C, d, and
0
e”.
For two fixed point zp € inte (Xg) and xy € inte (Xg), we can find a sufficiently small number
r > 0 such that By(z,,r) C inte(X?) for each ¢ € {b,w}. By Lemma and , there
exists an integer m € N such that 2KA™" < r and U™ (z.) C Bg(z,r) for each ¢ € {b, 10}, where
K is the constant from Lemma . By Corollary , for each color ¢ € {b,t} there exists
an m-pair_P™ € P™ containing z.. Then for each y € P C U™(z,) and each z € U™(y), by
Lemma , we have
d(z,z) < d(z,y) +dy,z.) < KA+ KA =2KA ™ <.

Since f(C) C C, this implies that for each integer n > m and each y € P, we have U"(y) C
U™(y) C Ba(zc,r) C inte(X?). O

7.3. Key bounds. The main goal in this subsection is to establish Proposition , namely,
an exponential upper bound for the measure of the set P"(a) with respect to the equilibrium
state 14, where P"(«) is defined in Definition . Roughly speaking, we use pairs defined in
Subsection to cover the set in ([l.2) and establish an upper bound for the measure of those
tiles by the Gibbs property of fi4.
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Definition 7.10. Let f, C, d, ¢, €°, Vés Omin, max Satisfy the Assumptions in Section H We
assume in addition that ¢ is not co-homologous to a constant in C'(S?). For each & € (min, Omax) \
{74} and each n € N, we define

(7 5) Pn(a) o {Pn € Pn(f7ca 60) - MaXge pn nilsn(b(x) = a} if Yo < & < Omax;
' o {P” € P"(f,C,e") : mingepn n 1S,0(z) < a} if amin < a < g,

and P"(«a) = JP"(«).
We remark that the sets P"(a) and P"(a) defined above depend on the choice of €.

Remark 7.11. For each o € (umin, max) \ {7¢} and each integer n € N, it is easy to see that
P"(a) is non-empty and is a union of some n-tiles in X"(f,C). Thus by Definition and
Proposition (vii), the map ey P*(a) — S? is a subsystem of f" with respect to C.
Recall that Q(f"|pn(q),C) is the tile maximal invariant set associated with f"|pn(,) With respect
to C (see Definition @) Denote Q = Q(fn|Pn(a),C). Then by Proposition ﬁ, we have
@) c o

The next lemma shows that the subsystem f"|pn(,y (With respect to f™ and C) is strongly
primitive (see Definition ) for each & € (Qmin, max) \ {7¢} and each sufficiently large integer
n € N.

Lemma 7.12. Let f, C, d, ¢, €°, Vés Omin, Omax Satisfy the Assumptions in Section . We
assume in addition that f(C) C C and ¢ is not co-homologous to a constant in C(S?). Then for
each a € (Qumin, Omax) \ {76}, there exists an integer N € N depending only on f, C, d, ¢, €°, and
« such that for each integer n > N and each color ¢ € {b,w}, there exists an n-pair P! € P"(«)
such that P C inte(X(). In particular, the subsystem f"|pn(q) (with respect to f™ and C) is
strongly primitive.

Proof. Let o € (umin, @max) \ {74} be arbitrary. Without loss of generality, we may assume that
Yo < @ < Omax-

We first prove the following claim, which follows from the definition of aax and the compact-
ness of M(S2, f) (equipped with the weak* topology).

Claim 1. For each integer m € N, there exists y € S? such that %quﬁ(y) > Omax-

To establish Claim 1, we argue by contradiction and assume that there exists an integer m € N
such that %Smgé(y) < oumax for all y € S2. Since ¢ is continuous and S? is compact, there exists
a number § > 0 such that %qub(y) < Qmax — 6 for all y € S2. Then for each p € M(S?, f) we
have

/1Sm¢d/~’/ < /(amax - 5) dﬂ = Qmax — J.
m

Note that M(S?, f) is compact in the weak* topology and the continuous map u — [¢du
maps M (S?, f) onto the closed interval [amin, umax]. Hence there exists an f-invariant measure
v € M(S?, f) such that [¢dv = cumax. Since

[aswosr= [Soer =3 8 fousr= o o fou

we get amax = [odv = [ %Smgﬁ dv < amax — 0, which is a contradiction, and so Claim 1 follows.

By Lemma @, there exists an integer M € N depending only on f, C, d, and ¢° such that for
each color ¢ € {b,t}, there exists an M-pair PM € PM such that for each integer n > M and
each x € PM we have U"(z) C inte(X?).

We fix such an integer M and the corresponding M -pairs PbM and Pé,\/[ in the following.
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Set

(7.6) N = {M Oimax — infeg2 §(2) J o

Qmax — &

Note that the integer N depends only on f, C, d, ¢, €, and o. Moreover, we have N > M + 1
since inf cg2 ¢(z) < amin < .

Claim 2. For each integer n > N and each color ¢ € {b, w}, there exists an n-pair P" € P"(«)
such that P C inte(X?).

To establish Claim 2, let integer n > N and color ¢ € {b,w} be arbitrary. Since N > M + 1,
we have n — M € N. By Claim 1 there exists y € S? such that ﬁSn,MQS(y) > max. Then
there exists x, € PM such that fM(x.) = y since fM(PM) = S2. Thus we have

1 1 1
” n@(xc) = ESMQ[’(%) + ﬁsn—M(ﬁ(y)
M n—M
s M
“n ZIEHSfQ ¢(Z) + Gmax
M .
= Omax — ;(amax - ZIEHSfQ ¢<Z))
M

Vv

Z Omax — N(amax - zi€n,5f2 ¢(Z))

2 Qmax — (amax - Oé)
«

)

where the last inequality follows from the definition of N (see (@)) and the fact that [¢]+1>1¢
for all t € R. By Corollary [7.7, there exists an n-pair P* € P" containing x.. Thus we_have
z. € P! € P"(a) since 1S,¢(z:) > a. Noting that 2. € PM and n > M, by Lemma @, we
get U™(xz) C inte(X?). Then it follows from the definition of U"(z) and P! that z. € P C
U"(z) C inte(X?), and so Claim 2 follows.

By Claim 2, it follows immediately from Definition and Definition @ that the subsystem
f"pr(a) (with respect to f* and C) is strongly primitive for each integer n > N. O

‘We record this result below for the convenience of the reader.

Proposition 7.13 (Z. Li [Lil18]). Let f, C, d, ¢, g satisfy the Assumptions in Section . Then
pe is a Gibbs measure with respect to f, C, and ¢, with the constant P, = P(f, ), i.e., there
exists a constant Cy,, > 1 such that for eachn € Ny, each n-tile X" € X"(f,C), and each x € X",
we have

1 X"
< po(X™) <Gy
C,u¢ exp(anﬁ(a?) - nP(f, ¢))
The following lemma is an immediate consequence of Lemma and Proposition .

Lemma 7.14. Let f, C, d, ¢, 8, ugs, €° satisfy the Assumptions in Section . Denote D(¢) =
C4 (diamg S2N8 and C = 2C ¢6D(¢), where CM > 1 is from Proposition and Ch1 > 0 is
given by () in Lemma Then the following statements hold:

(7.7)

(i) For each integer n € N and each n-pair P" € P", we have

pp(P") < Cem PUom inf eSn®(@)
xePm
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(ii) We assume in addition that ¢ is not co-homologous to a constant in C(S?). Then for
each n € N and each o € (74, tmax), we have

inf  Spo(x) = na—2D(¢).
zEP™ ()

Similarly, for each n € N and each a € (Qmin, Vp), we have supgepn(q) Sn@(T) < no +
2D(6).

Proof. For each n € N and each n-pair P" = X! U X7 € P", denote e" := X' N X} and fix an
arbitrary point x. € e”.

It follows from Lemma that

. . _ . S B .
(7.8) inf Su6(a) mm{xle% Sno(x), inf, anb(x)} > Sno(ze) — D(&)
Then by Proposition , we deduce that

Ho(P") < pg(XE) + 1o(X3) < 20,67 PIOmeSnded) < CemPUAM np oS0,
zePn
Consider o € (Yg4.Qmax). For each P" = X" UX7 € P"(a). there exists 29 € P" such that
Spo(x0) = na (recall ?@Sﬂ) Since z, € X' N X, by Lemma , Snd(xe) = Spop(xo) — D(9).
Thus by ([7.§), we obtain

s oy Sn9(®) = Pnglfi’g(a){xienlgn Snd(x)} > na—2D(9).

For o € (omin,74), the proof is similar. O
Now we are ready to prove the main results of this section.

Proposition 7.15 (Key bounds). Let f: S? — S? be an expanding Thurston map and C C S?
be a Jordan curve containing post f with the property that f(C) C C. Let d be a visual metric
on 8% for f. Let ¢ € C%P(S2%,d) be a real-valued Hélder continuous function with an exponent
B € (0,1] and not co-homologous to a constant in C(S?). Let ug be the unique equilibrium
state for the map f and the potential ¢. Denote D(¢) = Cy(diamg(5?))? and C = 2C’u¢eD(¢),
where Cy,, > 1 and Cy > 0 are the constants from Proposition and () in Lemma ,

respectively. Fiz a 0-edge ¢° € E(f,C) and denote Yo = [¢dpg, amin = min  [édu, and
HEM(S2,f)

max ‘= du. Then the following stat ts hold:
@ ueﬂﬁé,f) Jodu en the following statements ho

(i) For each o € (Y4, tmax), there exists an integer N € N depending only on f, C, d, ¢, €,
and o such that for each integer n > N, there exists a measure p € M(S?, f) such that

2D
po(P"(@)) < CeEnll0) =PI gng /¢du € {a - (¢)7anlax]'

n

(ii) For each o € (umin,Ve), there exists an integer N € N depending only on f, C, d, ¢, v,
and o such that for each integer n > N, there exists a measure p € M(S?, f) such that

ps(P™ () < CemPulhO=PUAN angd /<Z>du € [amin,a + 211@} :

Proof. We first_consider the case where a € (74, imax). Let & € (74, dmax) be arbitrary.

By Lemma , there exists an integer N € N depending only on f, C, d, ¢, €, and « such
that for each integer n > N, the subsystem f"|pn(,) (with respect to f" and C) is strongly
primitive. Let integer n > N be arbitrary. Denote Q = Q(f"|pn(q),C). Then it follows from
Propositions and @ that f7(Q2) = Q and Q\ C # 0.
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Let yp € )\ C be arbitrary. By Proposition and Theorem , we have

m—1 nk
wp ho(Fle) + / S, dv lim —log oS0 Sub(FE ()
(7.9) VEM(Q,J‘”IQ){ } Mmoo m (f"lnz)m(yt))

Here M(€, f™|q) denotes the set of f"|q-invariant Borel probability measures on 2 endowed with
the weak™ topology, and h,(f"|q) denotes the measure-theoretic entropy of f"|q for v. For the
summand inside the logarithm in ([7.9), we have

(7.10) S R o Snd(f™*(x H Y S,

ze(f"a) ™ (yo) =0 yip1e(fla) " (vi)

Claim. For each point y € Q\ C, we have card((f"|q) (y)) = card(P"(«)), and each n-pair
P" € P"(«) contains exactly one preimage x € (f"|q)!(y), which satisfies z € Q \ C.

To establish this Claim, we consider an arbitrary point y € Q \ C. Without loss of generality
we may assume that y € inte(Xg). Then by Proposition B.6, we have card(f~"(y)) = (deg f)" =
card(X}), and each black n-tile X' € X' contains exactly one preimage x € f~"(y), which
satisfies = € inte(X}'). Thus each n-pair P" € P"(«a) contains exactly one preimage x € f~"(y) N
P"(a), which satisfies = € inte(P"™), and we have

card(f~"(y) N P"(«)) = card(P"(«)).

Let preimage x € f~"(y) N P"(a) be arbitrary. Noting that f~"(y) N P"(a) = ( | n(a))”
and y € Q\ C, by Proposition , we have z € Q\ C. Since (o) (y) = f"(y) NQ
f™(y) N P™(a), the claim follows.

By the claim, we know that all the preimages y; in the summation in () belong to Q2 \ C.
Moreover, for each point y € Q\ C, every n-pair P" € P"(«) contains exactly one preimage
r € (o)~ (y), and every preimage = € (f*|q)!(y) is contained in a unique n-pair P* € P"(«).
Thus, we get the first two inequalities of the following;:

3 eXilo Snd(f™*(x H Yo eSnolun)

ze(f"a) = (yo) =0 yip1€(f"la) " (wi)

P < inf Z es"(b(x))m

YENE a1 ()

> - Sn¢(:c>)’”
(Y me
PreP” ()

> (CflenP(f,qS) Z u¢(P")>m
PreP”(a)
= (C_le”P(f7¢)M¢(Pn(a)))m

Hy )

The last inequality follows from Lemma and the last equality follows from Lemma @
and Theorem @Y Taking logarithms of both sides, dividing by m, and plugging the result
into the previous inequality, we get

m—1
ml_l}f_li}oo % log< Z exp(z Sn¢(f”k(a:)))> > log(pe(P™(0))) + nP(f, ¢) —log C.

ze(f™a)~™(yo) k=0
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Plugging this inequality into (@) yields

(7.11) sup_ {h(f"lo) + / S dv b > log(1g(P" () + nP(f,8) ~ log C.
veM(Q,f"q)

By Theorem M and Proposition there exists an equilibrium state © € M(Q, f"q) C
M(S2, f) that attains the supremum in ([7.11). Denote p = Zl o fiji. Then p € M(S?, f)

and we have
1 n—1 A 1 n—1 ‘ 1
Joan= [ Soari= [Soosan= [soa

By Lemma (ii), we have inf,epn(a) Sn(x) = na—2D(¢). Noting that suppii € Q C P"(«),
we have

Jodu=" [Su0daza-20@m !

Thus the measure y satisfies [¢du € [ — 2D(d)n ™", atmax] -
By (@) and (@) we have

n—1
(712) nh() = hu(F") = S Ry,
1=0

We now show that hyiz(f") = hg(f") for each i € {0, 1 ..., n —1}. Indeed, the measure f.ji is
f-invariant and the triple (S2, ", f.1i) is a factor of (52, f*,7i) by the map f. It follows that
hea(f") < ha(f™) (see for example, [KH95, Proposition 4.3.16]). Iterating this and noting that
frin = (f™)«it = by f™-invariance of 11, we obtain

ha(f") = hypa(f™) < hpnap(f7) <o < hpp(f™) < ha(f").
Hence hyi(f") = ha(f") for each i € {0, 1 ..., n — 1}. Combining this with (), we obtain
nhu(f) = ha(f*) = ha(f"lo)-
Thus
() + [odu) =har71a) + [8,047 > oss(P" @) + nP(S.0) ~ o,
0g P (a))) < n(Pu(f,¢) — P(f,¢)) + logC. This completes the proof of Proposi-
tlon ﬂ‘ '

For o € (min, V), the proof is similar. O

7.4. Proof of the large deviation asymptotics. In this subsection, we establish large de-
viation asymptotics for expanding Thurston maps. More precisely, we first prove the results
under the assumption that there exists an f-invariant Jordan curve C with post f C C. Then by
Lemma B.14, we remove this assumption and prove Theorem

Proposition 7.16. Let f: 5> — S? be an expanding Thurston map and C C S? be a Jordan
curve containing post f with the property that f(C) C C. Let d be a visual metric on S? for f. Let
¢ € CYP(S% d) be a real-valued Hélder continuous function with an exponent B € (0,1] and not
co-homologous to a constant in C(S?). Let e be the unique equilibrium state for the map f and

the potential ¢. Denote = dpg, amin '=  min dup, and amax =  max d
p ¢ Yo f¢ He min LeM SQf)f(b 19 ma; LeM SQf)f(b M.

Then for each o € (Qmin, Omax), there exists an integer N € N depending only on f, C, d, ¢, and
a such that for each integer n > N,

uqs({x € 5% :sgn(a — %) Sno(x) > sgn(a —%)a}) < Cpetem,
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where Cy, > 0 is a constant depending only on f, C, d, ¢, B, and a. Quantitatively, we choose
Co =20, exp((1 + 2|I’(oz)\)Cl(diamd(S2))ﬂ),
where C,,, > 1 is the constant from Proposition and C1 = 0 is the constant defined in ()

Ko
in Lemma .

Proof. We denote D(¢) := C1(diamg(S?))? and C = 2C,,,eP® in this proof.

We first consider the case where a € (74, max). Let & € (74, dmax) be arbitrary.

For each 0-edge e € E°(£,C), by Proposition, there exists an integer N0 € N depending
only on f, C, d, ¢, a, and €? such that for each integer n > N,o, there exists a measure pu €
M(S?, f) satisfying

po(P(@)) < CelPUDPUN and - [odpe [a = 2D(@n ! .

Since E°(f,C) is a finite set, there exists an 0-edge € € E°(f,C) such that
Nz = min{ N : e® e E°(f,C )}
We fix such 0-edge €° and let
N = max{Ngo, [2D(¢)/(a =741},
where [x] denotes the smallest integer no less than . Note that this integer N satisfies v4 +

2DJ\(/qb) < a and depends only on f, C, d, ¢, and a.

For each integer n > N, by the definition and properties of the rate function I (see (@) and
Proposition [7.1), we have that

pe({z € S :n1S,0(z) > a})

pg(P" (@)

CePulf.0)=P(f,¢))n

Cexp(sup{P,(f,¢) — P(f,¢) : v € An}n)

= Cexp(—inf{I(n) : n € [a — 2D(¢)n"", tmax|}n)
= Cexp(—I(a—2D(¢)n ')n)

< C€2D(¢)1/(a)6_](a)n,

NN N

where A, = {v € M(S?, f) : [¢dv € [ — 2D(¢)n"!, atmax]}. The last inequality is shown as
follows. By Taylor’s formula, there exists 6 € [ 2D(¢p)n~t, 0] such that

I(a—2D(¢)n" ) = I(a) — 2D(¢)n I’ (a + 0).
Since I is convex and C!, I’ is increasing on (
I(a—2D(¢)n"") = I(a) — 2D(¢)n" ' I'(a).
By choosing Cy, := 2C,,, exp((1 + 2I'(2))D(¢)), we deduce that
p({z € 8% :n71S,0(x) > a}) < Cue 1@,

For a € (amin, Y9), the proof is similar. In this case, we choose Co, = 2C),, exp((1—2I"(a))D(9)).

Ve, Omax) and I'(a + 6) < I'(a). Hence,

For a = 74, the conclusion holds trivially since C.,, > 1 and I(4) = 0. This completes the
proof. O

Now we can prove the Theorem E The key point of the proof is to iterate the map and apply
Proposition @
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Proof of Theorem ! We first consider the case where o € (V4, Omax)-
By Lemma i we can find a sufficiently high iterate F' := fX of f such that there exists
an F-invariant Jordan curve C_C S? with post F' = post f C C. Then F is also an expanding
Thurston map (recall Remark ) We fix such an integer K, a map F, and a Jordan curve C.

Let ¢ € C%%(S2,d) for some § € (0,1]. Denote ® = S{(qb. Then ® € C%P(S2 d) since f is
Lipschitz continuous with respect to d (see [Lil8, Lemma 3.12]). Let pre and Ipe denote the
unique equilibrium state and the rate function, respectively, for the map F and the potential
®. Recall from Subsection @ that P(F,®) = KP(f,¢). Then it follows from P, (F,®) =
KP,,(f,¢) and the uniqueness of the equilibrium state that u Since ¢ is not co-
homologous to a constant in C(S?) (with respect to f), Theorem @ ﬁunphes that pg # po,
where g denotes the measure of maximal entropy of ote that pg is also the measure of
maximal entropy of F'. Hence, it follows from Theorem @ that ® is not co-homologous to
a constant in C(S?) (with respect to F).

We next show that Ir ¢ (Ka) = KI(a) for each & € (min, ®max). By Proposition @ and
Lemma [7.2, we have

I(a) = P(f,¢) — P(f.§(a)¢) + (§(a) — Da
and
Ins(K&) = P(F,®) — P(F,&p(Ka)®) + (65(K&) — DK,
where {(a) and {p(Ka) are defined by

~ dP(f,t _  dP(F,t®
o= M and Ka= (7) ,
dt  [_¢@) dt t=€p (K&)
respectively. Since P(F,t®) = KP(f,t¢) for each t € R, we get
~ 1 dP(F,t®) dP(f,to)
a=——"T—" =7 .
K dt g xa At ligp(xca)

Thus {p(Ka) = £(a) by the uniqueness of {(a) (see Lemma @) Then it follows immediately
from the expressions of I(a) and Ire(Ka) that Ipe(Ka) = KI(a) and I o (Ka) = I'(@).

Applying Proposition &, we obtain the large deviation asymptotics for the map F' and the
potential ®. Thus for each & € [v4, umax) there exists an integer M € N such that for each integer
m>= M,

(7.13) u¢({w €S2 m1SEo(x) > K&}) < Cgge treKa)m — ¢ —o—KI(@m

where Cgg = 2C,,, exp(D(®)(1 + 21}, 4 (Ka))) = 2C,,, exp(D(®)(1 + 2I'(q))). Here Cy, is the
constant from Proposition and the constant D(®) dependents only on F, C, d, ®, and f.

We will derive the large deviation asymptotics for f and ¢ from () Indeed, for each integer
m > M and each k € {0, 1 ..., K — 1}, we have

{res?: st+k¢( ) = (mK + k)a}
C {l‘ e s5?: KCb( z) 2 (mK +k)a — kHGZ)HOO}

(7.14) )
C {x €5 qub( x) =2 mKao — 2K||qb||oo}
={ze S?:m IS d(x) > K(oa— 2m_1||gz3||oo)}.
Put
(7.15) N = K max{M, [2[|¢]loo/(cr = 75)1}-
Note that the integer N satisfies QJH\;Z;”K = Yo
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Recall that o € (74, umax). For each integer n > N, we can write n = mK +k for some integers

k€ Ao, ... — 1} and m > M satisfying o — m > 4. Then by (ﬂ) and (m), we get
the first two 1nequahtles of the followmg
no({z € §% :n718l6(x) > a})
ol € 5 S ola) > (4 Ky
(7.16) <pp({z €S :m '1SE®(2) > K (o —2m|¢]lx0) })

<20, exp(D(@)(1 + 20" (o — 2m L[ 6]l0))) e KT (a-2m )
<

where C,, == 2C,, exp(D(q>)(1 +20'(a)) + 2K ||¢]|seI' () + KI(a)). The last inequality in ([7.16)
is shown as follows. By Taylor’s formula, there exists 6 € [—%, O] such that
I{a —2m7¢lleo) = I(a) = 2m~|¢lloc I’ (cx + 6).
Since I is convex and C*, I" is increasing on (74, umax) and I'(a + 0) < I’(c). Hence,
I{a—2m™lle) = I(@) = 2m™¢] oI’ (a).
Then

—mKI(a-2m8le) o o-mEKI(@) 42Kl (@) — (2K Bl (@)+hI(0) =nI(@) ¢ (2K ¢l (@)+KT(a) (@),

e e

Since I’ (a — 2m™!|¢||) < I'(ar), we obtain the last inequality in () Therefore, we conclude
that for each a € (74, max), there exist an integer N € N (given by ([.15)) and a constant
Cy > 0 such that for each integer n > N,

pp({z € 8% :n18lp(x) > a}) < Cue 1@,

For o € (oumin, V), the proof is similar.

For a = ~4, the conclusion holds trivially since () = 0. This completes the proof. (Il
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