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Abstract. Expanding Thurston maps were introduced by M. Bonk and D. Meyer with motivation
from complex dynamics and Cannon’s conjecture from geometric group theory via Sullivan’s dictio-
nary. In this series of two papers, including [LSZ25], we develop the thermodynamic formalism for
subsystems of expanding Thurston maps. In this paper, we prove the uniqueness and various ergodic
properties of the equilibrium state for a strongly primitive subsystem and a real-valued Hölder con-
tinuous potential, and establish the equidistribution of preimages of the subsystem with respect to
the equilibrium state. As a result, for a strongly primitive subsystem of an expanding Thurston map
without periodic critical points, we obtain level-2 large deviation principles for the distributions of
Birkhoff averages and iterated preimages.
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1. Introduction

A Thurston map is a (non-homeomorphic) branched covering map on a topological 2-sphere S2

that is postcritically-finite, meaning that each of its critical points has a finite orbit under iteration.
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The most important examples are given by postcritically-finite rational maps on the Riemann sphere
Ĉ. While Thurston maps are purely topological objects, a deep theorem due to W.P. Thurston
characterizes Thurston maps that are, in a suitable sense, described in the language of topology and
combinatorics, equivalent to postcritically-finite rational maps (see [DH93]). This suggests that for
the relevant rational maps, an explicit analytic expression is not so important but rather a geometric-
combinatorial description. This viewpoint is both natural and fruitful for considering more general
dynamical systems that are not necessarily conformal.

In the early 1980s, D.P. Sullivan introduced a “dictionary” that is now known as Sullivan’s dictio-
nary, which connects two branches of conformal dynamics: iterations of rational maps, and actions
of Kleinian groups. Under Sullivan’s dictionary, the counterpart to Thurston’s theorem in geometric
group theory is Cannon’s conjecture [Can94]. This conjecture predicts that a Gromov hyperbolic
group G whose boundary at infinity ∂∞G is a topological 2-sphere S2 admits a geometric action on
the hyperbolic 3-space H3.

Inspired by Sullivan’s dictionary and their interest in Cannon’s conjecture, M. Bonk and D. Meyer
[BM10, BM17], as well as P. Haïssinsky and K.M. Pilgrim [HP09], studied a subclass of Thurston
maps, called expanding Thurston maps, by imposing some additional condition of expansion. Roughly
speaking, a Thurston map is expanding if for any two points x, y ∈ S2, their preimages under
iterations of the map get closer and closer (see Subsection 3.2 for the precise definition). In particular,
a postcritically-finite rational map on Ĉ is expanding if and only if its Julia set is equal to Ĉ. For
each expanding Thurston map, we can equip S2 with a natural class of metrics called visual metrics
(see Subsection 3.2 for details), that are snowflake equivalent to each other and are constructed in a
similar way as the visual metrics on the boundary ∂∞G of a Gromov hyperbolic group G (see [BM17,
Chapter 8] for details, and see [HP09] for a related construction).

The dynamical systems that we study in this paper are called subsystems of expanding Thurston
maps, inspired by a translation of the notion of subgroups from geometric group theory via Sullivan’s
dictionary. To clarify this concept, we consider an expanding Thurston map f : S2 → S2 and a Jordan
curve C ⊆ S2 that contains the postcritical set post f . The condition post f ⊆ C ensures that the
closure of each connected component of S2 \ f−n(C) is a closed Jordan region. We call each such
set an n-tile. Consider some 1-tiles and denote their union by U . The restriction F := f |U is called
a subsystem of f with respect to C, and the dynamics of F : U → S2 generates the tile maximal
invariant set Ω ⊆ S2, which is the intersection of unions of n-tiles contained in F−n(S2) for n ∈ N
(see Subsection 3.3 for details).

For expanding Thurston maps, roughly speaking, 1-tiles together with the maps restricted to
those tiles play a role similar to that of generators in the context of Gromov hyperbolic groups. For
example, one can recover S2 and the original map f from all its 1-tiles and the dynamics on those
tiles. If we consider all n-tiles for some n ∈ N, we obtain an iterate fn of f , which corresponds to a
finite-index subgroup of the original group in the group setting. Given such similarity, it is natural
to investigate more general cases, such as dynamics generated by certain 1-tiles, which leads to our
study of subsystems. We remark that although the concept of a subsystem shares certain similarities
with the notion of a repeller (see [Pes97, PU10]), the latter typically requires smooth and uniformly
expanding assumptions, neither of which are satisfied by a subsystem.

In this paper, we delve into the dynamics of subsystems of expanding Thurston maps from the
perspective of ergodic theory. Ergodic theory has played a crucial role in the study of dynamical
systems. The investigation of invariant measures has been a central part of ergodic theory. However,
a dynamical system may possess a large class of invariant measures, some of which may be more
interesting than others. It is, therefore, crucial to examine the relevant invariant measures.

The thermodynamic formalism serves as a viable mechanism for generating invariant measures
endowed with desirable properties. More precisely, for a continuous transformation on a compact
metric space, we can consider the topological pressure as a weighted version of the topological entropy,
with the weight induced by a real-valued continuous function, called potential. The Variational
Principle identifies the topological pressure with the supremum of its measure-theoretic counterpart,
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the measure-theoretic pressure, over all invariant Borel probability measures [Bow75, Wal82]. Under
additional regularity assumptions on the transformation and the potential, one gets the existence
and uniqueness of an invariant Borel probability measure maximizing the measure-theoretic pressure,
called the equilibrium state for the given transformation and the potential. The study of the existence
and uniqueness of the equilibrium states and their various other properties, such as ergodic properties,
equidistribution, statistical properties, etc., has been the primary motivation for much research in
the area.

The ergodic theory of expanding Thurston maps was studied by the first author of the current
paper in [Li17]. In [Li18], the first author developed the thermodynamic formalism and investigated
the existence, uniqueness, and other properties of equilibrium states for expanding Thurston maps.
Moreover, for expanding Thurston maps without periodic critical points, the first author established
level-2 large deviation principles for iterated preimages and periodic points in [Li15], utilizing a
general framework devised by Y. Kifer [Kif90] and reformulated by H. Comman and J. Rivera-Letelier
[CRL11]. Additionally, see the related works in higher dimensions [OP14, BD23, BD24].

The current paper is the second in the series of two papers (together with [LSZ25]) studying
the ergodic theory of subsystems of expanding Thurston maps. Building on the groundwork laid
in the previous paper [LSZ25], where we developed the thermodynamic formalism and investigated
the existence of equilibrium states for subsystems, we now turn our attention to the uniqueness and
ergodic properties of these equilibrium states. By leveraging the existence and uniqueness of the
equilibrium states, we establish level-2 large deviation principles for the distributions of Birkhoff
averages and iterated preimages for strongly primitive subsystems of expanding Thurston maps
without periodic critical points. In particular, the results in this series extend the corresponding
results in [Li18, Li15] as mentioned above.

Our investigation of subsystems also has applications in the ergodic properties and large deviation
theory of expanding Thurston maps. In the recent work [LS24], for every expanding Thurston
map, by using subsystems, we prove that the set of ergodic measures is entropy-dense in the space
of invariant measures. We also establish level-2 large deviation principles for the distributions of
Birkhoff averages, periodic points, and iterated preimages, which generalizes the corresponding results
in [Li15] by allowing the presence of periodic critical points. Additionally, by constructing suitable
subsystems, we show that the entropy map of an expanding Thurston map f is upper semi-continuous
if and only if f has no periodic critical points. This finding provides a negative answer to the question
posed in [Li15] and indicates that the method used there to prove large deviation principles is not
applicable to expanding Thurston maps with periodic critical points. In this context, subsystems
serve as an important tool for studying expanding Thurston maps. We anticipate more applications
of subsystems in the future.

1.1. Main results. In order to state our results more precisely, we briefly review some key concepts.
We refer the reader to Section 3 for a detailed discussion.

Let f : S2 → S2 be an expanding Thurston map with a Jordan curve C ⊆ S2 satisfying post f ⊆ C.
Here post f :=

∪
n∈N{fn(c) : c ∈ S2 is a critical point of f}. For each n ∈ N0, the set of n-tiles is

Xn(f, C) := {Xn : Xn is the closure of a connected component of S2 \ f−n(C)}.
We say that a map F : dom(F ) → S2 is a subsystem of f with respect to C if dom(F ) =

∪
X

for some non-empty subset X ⊆ X1(f, C) and F = f |dom(F ). We denote by Sub(f, C) the set of all
subsystems of f with respect to C.

Consider a subsystem F ∈ Sub(f, C). For each n ∈ N0, we define the set of n-tiles of F to be
Xn(F, C) := {Xn ∈ Xn(f, C) : Xn ⊆ F−n(F (dom(F )))},

where we set F 0 := idS2 when n = 0. We call each Xn ∈ Xn(F, C) an n-tile of F . We define the tile
maximal invariant set associated with F with respect to C to be

Ω = Ω(F, C) :=
∩
n∈N

(∪
Xn(F, C)

)
.
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We note that Ω ⊆ S2 is compact and is forward invariant under F , i.e., F (Ω) ⊆ Ω (see Proposi-
tion 3.9 (ii)). Hence, we can consider the restriction F |Ω : Ω → Ω and its iterates. In this context,
we denote by M(Ω, F |Ω) the set of F |Ω-invariant Borel probability measures on Ω, by hµ(F |Ω) the
measure-theoretic entropy of F |Ω for µ ∈ M(Ω, F |Ω), and by P (F |Ω, φ|Ω) the topological pressure
for F |Ω and φ|Ω, where φ ∈ C(S2) (see Subsection 3.1 for precise definitions).

In the following theorem, under the additional assumption that the Jordan curve C is forward
invariant (i.e., f(C) ⊆ C), we establish the uniqueness and various ergodic properties of the equilib-
rium state for a strongly primitive subsystem (see Definition 3.12) and a Hölder continuous potential
with respect to a visual metric. Additionally, we demonstrate the equidistribution of preimages with
respect to the equilibrium state.

Theorem 1.1. Let f : X → X be either an expanding Thurston map on a topological 2-sphere X = S2

equipped with a visual metric, or a postcritically-finite rational map with no periodic critical points on
the Riemann sphere X = Ĉ equipped with the chordal metric. Let ϕ : X → R be Hölder continuous.
Let C ⊆ X be a Jordan curve containing post f with the property that f(C) ⊆ C. Consider a strongly
primitive subsystem F ∈ Sub(f, C). Denote Ω := Ω(F, C).

Then there exists a unique equilibrium state µF,ϕ for F |Ω and ϕ|Ω. Moreover, µF,ϕ is non-atomic
and the measure-preserving transformation F |Ω of the probability space (Ω, µF,ϕ) is forward quasi-
invariant, exact, and in particular, mixing and ergodic.

In addition, the preimages points of F are equidistributed with respect to µF,ϕ, i.e., for each
sequence {xn}n∈N of points in X and each sequence {cn}n∈N of colors in {b,w} satisfying xn ∈ X0

cn
for each n ∈ N, we have

1

Zn(ϕ)

∑
y∈F−n(xn)

degcn(F
n, y) exp

(
SFn ϕ(y)

) 1
n

n−1∑
i=0

δF i(y)
w∗
−→ µF,ϕ as n→ +∞,

where SFn ϕ(y) :=
∑n−1

i=0 ϕ(F
i(y)) and Zn(ϕ) :=

∑
y∈F−n(xn)

degcn(F
n, y) exp

(
SFn ϕ(y)

)
.

Here X0
b , X

0
w ∈ X0(f, C) are the black 0-tile and the white 0-tile (see Subsection 3.2), respectively,

degb(F
n, x) and degw(F

n, x) are the black degree and white degree of Fn at x (see Definition 3.10
in Subsection 3.3), respectively, and the symbol w∗ indicates convergence in the weak∗ topology. See
Theorem 5.1 and Definition 6.1 for the definitions of a forward quasi-invariant measure-preserving
transformation and an exact measure-preserving transformation, respectively.

Remark. There exist subsystems of expanding Thurston maps such that the equilibrium states are
not unique (see Example 3.8 (i)), or the dynamical systems restricted to these subsystems are not
mixing (see Example 3.8 (ii)).

Theorem 1.1 combines [LSZ25, Remark 3.12], Theorems 5.1, 6.3, Corollaries 6.4, 6.6, and Theo-
rem 7.1. We remark that the existence of the equilibrium state in Theorem 1.1 has been established
in [LSZ25, Theorem 1.1] (see also Theorem 3.27) under a weaker assumption on the subsystem.

Based on Theorem 1.1, for strongly primitive subsystems of expanding Thurston maps without
periodic critical points, we obtain level-2 large deviation principles (see Subsection 8.1 for a brief
introduction) for the distributions of Birkhoff averages and iterated preimages.

Theorem 1.2. Let f : X → X be either an expanding Thurston map with no periodic critical points
on a topological 2-sphere X = S2 equipped with a visual metric, or a postcritically-finite rational map
with no periodic critical points on the Riemann sphere X = Ĉ equipped with the chordal metric. Let
ϕ : X → R be Hölder continuous. Let C ⊆ X be a Jordan curve containing post f with the property
that f(C) ⊆ C. Consider a strongly primitive subsystem F ∈ Sub(f, C). Denote Ω := Ω(F, C). Let
P(Ω) denote the space of Borel probability measures on Ω equipped with the weak∗-topology. Let µF,ϕ
be the unique equilibrium state for F |Ω and ϕ|Ω.
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For each n ∈ N, let Vn : Ω → P(Ω) be the continuous function defined by

(1.1) Vn(x) :=
1

n

n−1∑
i=0

δF i(x),

and denote SFn ϕ(x) :=
∑n−1

i=0 ϕ(F
i(x)) for each x ∈ Ω. For each n ∈ N, we consider the following

Borel probability measures on P(Ω).
Birkhoff averages. Σn := (Vn)∗(µF,ϕ) (i.e., Σn is the push-forward of µF,ϕ by Vn : Ω → P(Ω)).
Iterated preimages. Given a sequence {xj}j∈N of points in Ω \ C, put

(1.2) Ωn(xn) :=
∑

y∈(F |Ω)−n(xn)

exp
(
SFn ϕ(y)

)∑
y′∈(F |Ω)−n(xn)

exp
(
SFn ϕ(y

′)
)δVn(y).

Then each of the sequences {Σn}n∈N and {Ωn(xn)}n∈N converges to δµF,ϕ
in the weak∗ topology, and

satisfies a large deviation principle with the rate function Iϕ : P(Ω) → [0,+∞] given by

(1.3) Iϕ(µ) :=

{
P (F |Ω, ϕ|Ω)− hµ(F |Ω)−

∫
ϕdµ if µ ∈ M(Ω, F |Ω);

+∞ if µ ∈ P(Ω) \M(Ω, F |Ω).

Furthermore, for each convex open subset G of P(Ω) containing some invariant measure, we have
infG Iϕ = infG Iϕ, and

(1.4) lim
n→+∞

1

n
log Σn(G) = lim

n→+∞

1

n
log Ωn(xn)(G) = − inf

G
Iϕ,

and (1.4) remains true with G replaced by its closure G.

Remark. As shown in our recent work [LS24], for expanding Thurston maps, the absence of periodic
critical points may not be essential for level-2 large deviation principles, although the proof in the
general case is much more involved and relies on the construction of suitable subsystems. Therefore, it
is also interesting to investigate level-2 large deviation principles as in Theorem 1.2 without assuming
the absence of periodic critical points.

As an immediate consequence of Theorem 1.2, we get the following corollary, which gives charac-
terizations of measure-theoretic pressures.

Corollary 1.3. Under the assumptions of Theorem 1.2, given a sequence {xn}n∈N of points in Ω\C,
for each µ ∈ M(Ω, F |Ω) and each convex local basis Gµ of P(Ω) at µ, we have

hµ(F |Ω) +
∫
ϕ dµ = inf

G∈Gµ

{
lim

n→+∞

1

n
logµF,ϕ({x ∈ Ω : Vn(x) ∈ G})

}
+ P (F |Ω, ϕ|Ω)

= inf
G∈Gµ

{
lim

n→+∞

1

n
log

∑
y∈(F |Ω)−n(xn),Vn(y)∈G

exp
(
SFn ϕ(y)

)}
.

(1.5)

By applying the general theory of large deviations, particularly the contraction principle (see
Theorem 8.1), we derive the following level-1 large deviation principles from Theorem 1.2.

Corollary 1.4. Under the assumptions of Theorem 1.2, let ψ : Ω → R be a continuous func-
tion, and define ψ̂ : P(Ω) → R by ψ̂(µ) :=

∫
ψ dµ. Then each of the sequences

{
ψ̂∗(Σn)

}
n∈N and{

ψ̂∗(Ωn(xn)
}
n∈N satisfies a large deviation principle in R with the rate function J : R → [0,+∞]

defined by

(1.6) J(x) := inf

{
Iϕ(µ) : µ ∈ P(Ω),

∫
ψ dµ = x

}
.
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Here Iϕ : P(Ω) → [0,+∞] is defined in (1.3). Furthermore, if cψ < dψ, where cψ := min
{∫
ψ dν : ν ∈

M(Ω, F |Ω)
}

and dψ := max
{∫
ψ dν : ν ∈ M(Ω, F |Ω)

}
, then for each interval K ⊆ R intersecting

(cψ, dψ),

− inf
x∈K

J(x) = lim
n→+∞

1

n
logµF,ϕ

({
x ∈ Ω :

1

n
Snψ(x) ∈ K

})
= lim

n→+∞

1

n
log

(∑
y∈(F |Ω)−n(xn),

1
n
Snψ(y)∈K wn(y) exp(Snϕ(y))∑

y′∈(F |Ω)−n(xn)
wn(y′) exp(Snϕ(y′))

)
.

(1.7)

1.2. Strategy and organization of the paper. We now discuss the strategy of the proof of our
main results and describe the organization of the paper.

We divide the proof of Theorem 1.1 into three parts: uniqueness, ergodic properties, and equidistri-
bution results. We remark that in Theorem 1.1, the existence of equilibrium states and the property
that the measure-preserving transformation F |Ω of the probability space (Ω, µF,ϕ) is forward quasi-
invariant have been established in [LSZ25] (see Theorem 3.27).

The method we employed to demonstrate the uniqueness of equilibrium state involves examining
the (Gâteaux) differentiability of the topological pressure function (established in Theorem 5.16)
and utilizing some techniques from functional analysis (see Theorem 5.3). See Section 5 for a more
detailed discussion.

To prove the differentiability of the topological pressure, we first introduce normalized split Ruelle
operators (see Definition 5.5), which are induced by split Ruelle operators (see Definition 3.21). We
remark that a related technique was first used in [BJR02], where the authors employed a version
of the split Ruelle operator technique to reduce the problem to a uniformly expanding situation.
In our context, the concepts of splitting the Ruelle operators and split Ruelle operators were first
introduced in [LZ18, LZ24] for expanding Thurston maps, and subsequently generalized to subsystems
of expanding Thurston maps in [LSZ25]. In this paper, we further define the normalized split
Ruelle operators for subsystems to establish uniform bounds and convergence results (for example,
Proposition 5.9, Lemma 5.10, Theorem 5.12, and Lemma 5.15), which generalize the corresponding
results in [Li18, LZ24].

Unlike the case of expanding Thurston maps or uniformly expanding maps, for subsystems, one
cannot define a normalized Ruelle operator simply by normalizing potentials due to the difficulties
caused by subsystems (compare Definition 5.5 with the corresponding one in [Li18, Section 6]). More
specifically, since the combinatorial structure of tiles of a subsystem is inadequate, the eigenfunctions
of the split Ruelle operator may not be continuous on the sphere. However, the eigenfunctions are
always continuous in the interior of 0-tiles, i.e., discontinuities can only occur at the boundaries of
0-tiles. To overcome these difficulties, we use the split sphere S̃ (see Definition 3.17) instead of the
sphere S2 by splitting S2 into two parts X0

b and X0
w and then considering their disjoint union. Then

the product of function spaces can be identified naturally with the space of functions on S̃. This
allows us to define the normalized split Ruelle operators on the space of continuous functions on the
split sphere S̃. Moreover, we verify that the normalized split Ruelle operators behave well under
iterations.

We then prove the uniform convergence of functions under the iterations of the normalized split
Ruelle operators. A key step is to show that the normalized split Ruelle operator has a uniform
contraction on some specific function space (described by some abstract modulus of continuity).
More specifically, for each function v in such a space, we show that the uniform norm ∥·∥∞ of
the function strictly decreases by a constant after several iterations of the normalized split Ruelle
operators (see Lemma 5.10). Our strategy is to find two preimages y and z such that v(y) ⩽ ∥v∥∞−δ
and v(z) ⩾ −∥v∥∞ + δ for some δ > 0, and then establish the desired uniform bounds by a careful
study of the combinatorics of tiles and tile maximal invariant sets of subsystems. One technical issue
arises from the fact that preimages converge to the tile maximal invariant set Ω under backward
iterations of the dynamics, while the function v is defined on the whole space, which is larger than
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Ω. Thus we need to find a way to show that the desired preimages exist. The idea is to involve
eigenmeasures and show that they are supported on Ω. Next, we can find two points y− and z+ in Ω
such that v(y−) ⩽ 0 and v(z+) ⩾ 0. Then we use the primitivity of the subsystem and combinatorics
of tiles to construct two preimages y and z with the desired properties. We remark that here, the
assumption of primitivity is necessary and guarantees that preimages y and z can be constructed
under the same backward iteration. Otherwise, there is a counter-example (see Remark 5.11).

Afterward, we establish the uniqueness of the eigenmeasure and a key lemma (Lemma 5.15),
from which the differentiability of the topological pressure follows. Then, by applying the result
Theorem 5.3 from functional analysis, we finish the proof of the uniqueness of equilibrium state.

We next prove that the measure-preserving transformation F |Ω of the probability space (Ω, µF,ϕ) is
exact (Theorem 6.3), where we use the Jacobian function and the Gibbs property of the equilibrium
state µF,ϕ (see Theorem 3.25). In particular, it follows that the equilibrium state µF,ϕ is non-atomic
(Corollary 6.4), and the transformation F |Ω is mixing and ergodic (Corollary 6.6).

Finally, we prove the equidistribution results for preimages (Theorem 7.1) by applying the uniform
convergence results (Theorem 5.12 and Lemma 5.15) established in the proof of the uniqueness.

To prove Theorem 1.2, we use a variant of Y. Kifer’s result [Kif90], as formulated by H. Comman
and J. Rivera-Letelier [CRL11], which is recorded in Theorem 8.3. In order to apply Theorem 8.3,
we need to verify three conditions: (1) the existence and uniqueness of the equilibrium state, (2)
the upper semi-continuity of the measure-theoretic entropy, and (3) some characterization of the
topological pressure (see Propositions 8.4 and 8.5). The first condition has been established in
Theorem 1.1. The second condition is known to hold for expanding Thurston maps without periodic
critical points (see [LS24, Theorem 1.1]) and is satisfied for subsystems by Lemma 8.6. The last
condition can be verified using a characterization of topological pressure established in [LSZ25] (see
(3.28) in Theorem 3.26).

We now describe the structure of this paper.
In Section 2, we fix some notation that will be used throughout the paper. In Section 3, we first

review some notions from ergodic theory and dynamical systems and go over some key concepts and
results on Thurston maps. Then we review some concepts and results on subsystems of expanding
Thurston maps. In Section 4, we state the assumptions on some of the objects in this paper, which we
will repeatedly refer to later as the Assumptions in Section 4. In Section 5, we prove the uniqueness
of the equilibrium states for subsystems. We introduce normalized split Ruelle operators and prove
the uniform convergence for functions under iterations of the normalized split Ruelle operators.
In Section 6, we prove some ergodic properties of the unique equilibrium state for subsystem. In
Section 7, we establish equidistribution results for preimages for subsystems of expanding Thurston
maps. In Section 8, we prove Theorem 1.2 and its corollaries.

2. Notation

Let C be the complex plane and Ĉ be the Riemann sphere. Let S2 denote an oriented topological
2-sphere. We use N to denote the set of integers greater than or equal to 1 and write N0 := {0} ∪N.
The cardinality of a set A is denoted by card(A).

Let g : X → Y be a map between two sets X and Y . We denote the restriction of g to a subset Z
of X by g|Z .

Consider a map f : X → X on a set X. The inverse map of f is denoted by f−1. We write fn for
the n-th iterate of f , and f−n := (fn)−1, for n ∈ N. We set f0 := idX , the identity map on X. For
a real-valued function φ : X → R, we write

Snφ(x) = Sfnφ(x) :=
n−1∑
j=0

φ
(
f j(x)

)
for x ∈ X and n ∈ N0. We omit the superscript f when the map f is clear from the context. Note
that when n = 0, by definition, we always have S0φ = 0.
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Let (X, d) be a metric space. For each subset Y ⊆ X, we denote the diameter of Y by diamd(Y ) :=
sup{d(x, y) : x, y ∈ Y }, the interior of Y by int(Y ), and the characteristic function of Y by 1Y , which
maps each x ∈ Y to 1 ∈ R and vanishes otherwise. For r > 0 and x ∈ X, we denote the open (resp.
closed) ball of radius r centered at x by Bd(x, r) (resp. Bd(x, r)). We often omit the metric d in the
subscript when it is clear from the context.

For a compact metrizable topological space X, we denote by C(X) (resp. B(X)) the space of
continuous (resp. bounded Borel) functions from X to R, by M(X) the set of finite signed Borel
measures, and P(X) the set of Borel probability measures on X. For µ ∈ M(X), we denote by ∥µ∥
the total variation norm of µ. Additionally, for u ∈ C(X), we denote

⟨µ, u⟩ :=
∫
udµ,

and define the finite signed Borel measure uµ ∈ M(X) as

(uµ)(A) :=

∫
A
udµ for Borel set A ⊆ X.

For a point x ∈ X, we define δx as the Dirac measure supported on {x}. If we do not specify
otherwise, we equip C(X) with the uniform norm ∥·∥C(X) := ∥·∥∞, and equip M(X) and P(X)
with the weak∗ topology. According to the Riesz representation theorem (see for example, [Fol99,
Theorems 7.17 and 7.8]), we identify the dual of C(X) with the space M(X).

The space of real-valued Hölder continuous functions with an exponent β ∈ (0, 1] on a metric space
(X, d) is denoted as C0,β(X, d). For each ϕ ∈ C0,β(X, d),

|ϕ|β := sup

{
|ϕ(x)− ϕ(y)|
d(x, y)β

: x, y ∈ X, x ̸= y

}
,

and the Hölder norm is defined as ∥ϕ∥C0,β := |ϕ|β + ∥ϕ∥C(X).

3. Preliminaries

3.1. Thermodynamic formalism. We first review some basic concepts from ergodic theory and
dynamical systems. For more detailed studies of these concepts, we refer the reader to [KH95,
Chapter 20] and [Wal82, Chapter 9].

Let (X, d) be a compact metric space and g : X → X a continuous map. Given n ∈ N,

dng (x, y) := max
{
d
(
gk(x), gk(y)

)
: k ∈ {0, 1, . . . , n− 1}

}
, for x, y ∈ X,

defines a metric on X. A set F ⊆ X is (n, ϵ)-separated (with respect to g), for some n ∈ N and ϵ > 0,
if for each pair of distinct points x, y ∈ F , we have dng (x, y) ⩾ ϵ.

For each real-valued continuous function ψ ∈ C(X), the following two limits exist and are equal
(see for example, [KH95, Subsection 20.2]), which we denote by P (g, ψ):

P (g, ψ) := lim
ϵ→0+

lim sup
n→+∞

1

n
logNd(g, ψ, ε, n) = lim

ϵ→0+
lim inf
n→+∞

1

n
logNd(g, ψ, ε, n),(3.1)

where Nd(g, ψ, ε, n) := sup
{∑

x∈E exp
(
Snψ(x)

)
: E ⊆ X is (n, ε)-separated with respect to g

}
. We

call P (g, ψ) the topological pressure of g with respect to the potential ψ. In particular, when ψ = 0,
the quantity htop(g) := P (g, 0) is called the topological entropy of g. Note that P (g, ψ) is independent
of d as long as the topology on X defined by d remains the same (see for example, [KH95, Subsec-
tion 20.2]). Moreover, the topological pressure is well-behaved under iteration. Indeed, if n ∈ N,
then P (gn, Snψ) = nP (g, ψ) (see for example, [Wal82, Theorem 9.8 (i)]).

We denote by B the σ-algebra of all Borel sets on X. A measure on X is understood to be a Borel
measure, i.e., one defined on B. We call a measure µ on X g-invariant if

µ
(
g−1(A)

)
= µ(A)

for all A ∈ B. We denote by M(X, g) the set of all g-invariant Borel probability measures on X.
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Let µ ∈ M(X, g). Then we say that g is ergodic for µ (or µ is ergodic for g) if for each set A ∈ B
with g−1(A) = A we have µ(A) = 0 or µ(A) = 1. The map g is called mixing for µ if
(3.2) lim

n→+∞
µ(g−n(A) ∩B) = µ(A)µ(B)

for all A, B ∈ B. It is easy to see that if g is mixing for µ, then g is also ergodic.
For each real-valued continuous function ψ ∈ C(X), the measure-theoretic pressure Pµ(g, ψ) of g

for the measure µ ∈ M(X, g) and the potential ψ is

(3.3) Pµ(g, ψ) := hµ(g) +

∫
ψ dµ,

where hµ(g) is the measure-theoretic entropy of g for µ.
The topological pressure is related to the measure-theoretic pressure by the so-called Variational

Principle. It states that (see for example, [KH95, Theorem 20.2.4])
(3.4) P (g, ψ) = sup{Pµ(g, ψ) : µ ∈ M(X, g)}
for each ψ ∈ C(X). In particular, when ψ is the constant function 0,
(3.5) htop(g) = sup{hµ(g) : µ ∈ M(X, g)}.
A measure µ that attains the supremum in (3.4) is called an equilibrium state for the map g and the
potential ψ. A measure µ that attains the supremum in (3.5) is called a measure of maximal entropy
of g.

Let X̃ be another compact metric space. If µ is a measure on X and the map π : X → X̃ is
continuous, then the push-forward π∗µ of µ by π is the measure given by π∗µ(A) := µ

(
π−1(A)

)
for

all Borel sets A ⊆ X̃.

3.2. Thurston maps. In this subsection, we go over some key concepts and results on Thurston
maps and expanding Thurston maps in particular. For a more thorough treatment of the subject,
we refer to [BM17, Li17, LSZ25].

Let S2 denote an oriented topological 2-sphere and f : S2 → S2 be a branched covering map. We
denote by degf (x) the local degree of f at x ∈ S2. The degree of f is deg f =

∑
x∈f−1(y) degf (x) for

y ∈ S2 and is independent of y.
A point x ∈ S2 is a critical point of f if degf (x) ⩾ 2. The set of critical points of f is denoted by

crit f . A point y ∈ S2 is a postcritical point of f if y = fn(x) for some x ∈ crit f and n ∈ N. The set
of postcritical points of f is denoted by post f .
Definition 3.1 (Thurston maps). A Thurston map is a branched covering map f : S2 → S2 on S2

with deg f ⩾ 2 and card(post f) < +∞.
We now recall the notation for cell decompositions of S2 used in [BM17] and [LSZ25]. A cell of

dimension n in S2, n ∈ {1, 2}, is a subset c ⊆ S2 that is homeomorphic to the closed unit ball Bn in
Rn, where Bn is the open unit ball in Rn. We define the boundary of c, denoted by ∂c, to be the set
of points corresponding to ∂Bn under such a homeomorphism between c and Bn. The interior of c is
defined to be inte(c) = c \ ∂c. For each point x ∈ S2, the set {x} is considered as a cell of dimension
0 in S2. For a cell c of dimension 0, we adopt the convention that ∂c = ∅ and inte(c) = c.

Let f : S2 → S2 be a Thurston map, and C ⊆ S2 be a Jordan curve containing post f . Then the
pair f and C induces natural cell decompositions Dn(f, C) of S2, for each n ∈ N0, in the following
way:

By the Jordan curve theorem, the set S2 \ C has two connected components. We call the closure
of one of them the white 0-tile for (f, C), denoted by X0

w, and the closure of the other one the black
0-tile for (f, C), denoted be X0

b . The set of 0-tiles is X0(f, C) :=
{
X0

b , X
0
w

}
. The set of 0-vertices is

V0(f, C) := post f . We set V
0
(f, C) :=

{
{x} : x ∈ V0(f, C)

}
. The set of 0-edges E0(f, C) is the set

of the closures of the connected components of C \ post f . Then we get a cell decomposition

D0(f, C) := X0(f, C) ∪E0(f, C) ∪V
0
(f, C)
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of S2 consisting of cells of level 0, or 0-cells.
We can recursively define the unique cell decomposition Dn(f, C), n ∈ N, consisting of n-cells such

that f is cellular for (Dn+1(f, C),Dn(f, C)). We refer to [BM17, Lemma 5.12] for more details. We
denote by Xn(f, C) the set of n-cells of dimension 2, called n-tiles; by En(f, C) the set of n-cells of
dimension 1, called n-edges; by V

n
(f, C) the set of n-cells of dimension 0; and by Vn(f, C) the set

{x : {x} ∈ V
n
(f, C)}, called the set of n-vertices. The k-skeleton, for k ∈ {0, 1}, of Dn(f, C) is the

union of all n-cells of dimension k in this cell decomposition.
For n ∈ N0, we define the set of black n-tiles as

Xn
b (f, C) :=

{
X ∈ Xn(f, C) : fn(X) = X0

b

}
,

and the set of white n-tiles as
Xn

w(f, C) :=
{
X ∈ Xn(f, C) : fn(X) = X0

w

}
.

From now on, if the map f and the Jordan curve C are clear from the context, we will sometimes
omit (f, C) in the notation above.

Definition 3.2 (Expansion). A Thurston map f : S2 → S2 is called expanding if there exists a metric
d on S2 that induces the standard topology on S2 and a Jordan curve C ⊆ S2 containing post f such
that
(3.6) lim

n→+∞
max{diamd(X) : X ∈ Xn(f, C)} = 0.

For an expanding Thurston map f , we can fix a particular metric d on S2 called a visual metric
for f . For the existence and properties of such metrics, see [BM17, Chapter 8]. For a visual metric
d for f , there exists a unique constant Λ > 1 called the expansion factor of d (see [BM17, Chapter 8]
for more details). One significant advantage of a visual metric d is that in (S2, d), we have good
quantitative control over the sizes of the cells in the cell decompositions.

We record the following lemma from [Li18, Lemma 3.13], which generalizes [BM17, Lemma 15.25].

Lemma 3.3 (M. Bonk & D. Meyer [BM17]; Z. Li [Li18]). Let f : S2 → S2 be an expanding Thurston
map, and C ⊆ S2 be a Jordan curve that satisfies post f ⊆ C and fnC(C) ⊆ C for some nC ∈ N. Let
d be a visual metric on S2 for f with expansion factor Λ > 1. Then there exists a constant C0 > 1,
depending only on f , C, nC, and d, with the following property:

If n, k ∈ N0, Xn+k ∈ Xn+k(f, C), and x, y ∈ Xn+k, then
(3.7) C−1

0 d(x, y) ⩽ d(fn(x), fn(y))/Λn ⩽ C0d(x, y).

The next distortion lemma follows immediately from [Li18, Lemma 5.1].

Lemma 3.4. Let f : S2 → S2 be an expanding Thurston map, and C ⊆ S2 be a Jordan curve that
satisfies post f ⊆ C and fnC(C) ⊆ C for some nC ∈ N. Let d be a visual metric on S2 for f with
expansion factor Λ > 1. Let ϕ ∈ C0,β(S2, d) be a real-valued Hölder continuous function with an
exponent β ∈ (0, 1]. Then there exists a constant C1 ⩾ 0 depending only on f , C, d, ϕ, and β such
that for all n ∈ N0, Xn ∈ Xn(f, C), and x, y ∈ Xn,
(3.8) |Snϕ(x)− Snϕ(y)| ⩽ C1d(f

n(x), fn(y))β ⩽ C1(diamd(S
2))β.

Quantitatively, we choose
(3.9) C1 := C0|ϕ|β

/(
1− Λ−β),

where C0 > 1 is the constant depending only on f , C, and d from Lemma 3.3.

A Jordan curve C ⊆ S2 is f -invariant if f(C) ⊆ C. If C is f -invariant with post f ⊆ C, then the cell
decompositions Dn(f, C) have nice compatibility properties. In particular, Dn+k(f, C) is a refinement
of Dn(f, C), whenever n, k ∈ N0. Intuitively, this means that each cell Dn(f, C) is “subdivided” by the
cells in Dn+k(f, C). According to Example 15.11 in [BM17], such f -invariant Jordan curves containing
post f need not exist. However, M. Bonk and D. Meyer [BM17, Theorem 15.1] proved that there
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exists an fn-invariant Jordan curve C containing post f for each sufficiently large n depending on f .
We record it below for the convenience of the reader.

Lemma 3.5 (M. Bonk & D. Meyer [BM17]). Let f : S2 → S2 be an expanding Thurston map, and
C̃ ⊆ S2 be a Jordan curve with post f ⊆ C̃. Then there exists an integer N(f, C̃) ∈ N such that for
each n ⩾ N(f, C̃) there exists an fn-invariant Jordan curve C isotopic to C̃ rel. post f .

For the convenience of the reader, we record Proposition 12.5 (ii) of [BM17] here.

Proposition 3.6 (M. Bonk & D. Meyer [BM17]). Let k, n ∈ N0, f : S2 → S2 be a Thurston map,
and C ⊆ S2 be an f -invariant Jordan curve with post f ⊆ C. Then every (n + k)-tile Xn+k is
contained in a unique k-tile Xk.

3.3. Subsystems of expanding Thurston maps. In this subsection, we review some concepts
and results on subsystems of expanding Thurston maps. We refer the reader to [LSZ25, Section 5]
for details.

We first introduce the definition of subsystems along with relevant concepts and notations that
will be used frequently throughout this paper. Additionally, we will provide examples to illustrate
these ideas.

Definition 3.7. Let f : S2 → S2 be an expanding Thurston map with a Jordan curve C ⊆ S2

satisfying post f ⊆ C. We say that a map F : dom(F ) → S2 is a subsystem of f with respect to C if
dom(F ) =

∪
X for some non-empty subset X ⊆ X1(f, C) and F = f |dom(F ). We denote by Sub(f, C)

the set of all subsystems of f with respect to C. Define
Sub∗(f, C) :=

{
F ∈ Sub(f, C) : dom(F ) ⊆ F (dom(F ))

}
.

Consider a subsystem F ∈ Sub(f, C). For each n ∈ N0, we define the set of n-tiles of F to be
(3.10) Xn(F, C) := {Xn ∈ Xn(f, C) : Xn ⊆ F−n(F (dom(F )))},

where we set F 0 := idS2 when n = 0. We call each Xn ∈ Xn(F, C) an n-tile of F . We define the tile
maximal invariant set associated with F with respect to C to be

(3.11) Ω(F, C) :=
∩
n∈N

(∪
Xn(F, C)

)
,

which is a compact subset of S2. Indeed, Ω(F, C) is forward invariant with respect to F , namely,
F (Ω(F, C)) ⊆ Ω(F, C) (see Proposition 3.9 (ii)). We denote by FΩ the map F |Ω(F,C) : Ω(F, C) →
Ω(F, C).

Let X0
b , X

0
w ∈ X0(f, C) be the black 0-tile and the white 0-tile, respectively. We define the color

set of F as
C(F, C) :=

{
c ∈ {b,w} : X0

c ∈ X0(F, C)
}
.

For each n ∈ N0, we define the set of black n-tiles of F as
Xnb (F, C) :=

{
X ∈ Xn(F, C) : Fn(X) = X0

b

}
,

and the set of white n-tiles of F as
Xnw(F, C) :=

{
X ∈ Xn(F, C) : Fn(X) = X0

w

}
.

Moreover, for each n ∈ N0 and each pair of c, s ∈ {b,w} we define

Xncs(F, C) :=
{
X ∈ Xnc (F, C) : X ⊆ X0

s

}
.

In other words, for example, a tile X ∈ Xnbw(F, C) is a black n-tile of F contained in X0
w, i.e., an n-tile

of F that is contained in the white 0-tile X0
w as a set, and is mapped by Fn onto the black 0-tile X0

b .
By abuse of notation, we often omit (F, C) in the notations above when it is clear from the context.
We discuss four examples below and refer the reader to [LSZ25, Subsection 5.1] for more examples.
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Example 3.8. Let f : S2 → S2 be an expanding Thurston map with a Jordan curve C ⊆ S2 satisfying
post f ⊆ C. Consider F ∈ Sub(f, C).

(i) The map F satisfies dom(F ) = X1
b∪X1

w for some X1
b ∈ X1

b(f, C) and X1
w ∈ X1

w(f, C) satisfying
X1

b ⊆ inte
(
X0

b

)
and X1

w ⊆ inte
(
X0

w

)
. In this case, F is surjective and Ω = {p, q} for some

p ∈ X1
b and q ∈ X1

w. One sees that F (Ω) = Ω since F (p) = p and F (q) = q. In particular,
F |Ω : Ω → Ω is not topological transitive (see Definition 6.7).

(ii) The map F satisfies dom(F ) = X1
b∪X1

w for some X1
b ∈ X1

b(f, C) and X1
w ∈ X1

w(f, C) satisfying
X1

b ⊆ inte
(
X0

w

)
and X1

w ⊆ inte
(
X0

b

)
. In this case, F is surjective and Ω = {p, q} for some

p ∈ X1
b and q ∈ X1

w. One sees that F (Ω) = Ω since F (p) = q and F (q) = p. In particular,
F |Ω : Ω → Ω is topological transitive but not topological mixing (see Definition 6.7).

(iii) The map F : dom(F ) → S2 is represented by Figure 3.1. Here S2 is identified with a pillow
that is obtained by gluing two squares together along their boundaries. Moreover, each square
is subdivided into 3×3 subsquares, and dom (F ) is obtained from S2 by removing the interior
of the middle subsquare X1

w ∈ X1
w(f, C) and X1

b ∈ X1
b(f, C) of the respective squares. In this

case, Ω is a Sierpiński carpet. It consists of two copies of the standard square Sierpiński
carpet glued together along the boundaries of the squares.

F

dom(F ) S2

Figure 3.1. A Sierpiński carpet subsystem.

(iv) The map F : dom(F ) → S2 is represented by Figure 3.2. Here S2 is identified with a pillow
that is obtained by gluing two equilateral triangles together along their boundaries. Moreover,
each triangle is subdivided into 4 small equilateral triangles, and dom (F ) is obtained from
S2 by removing the interior of the middle small triangle X1

b ∈ X1
b(f, C) and X1

w ∈ X1
w(f, C)

of the respective triangle. In this case, Ω is a Sierpiński gasket. It consists of two copies of
the standard Sierpiński gasket glued together along the boundaries of the triangles.

F
dom(F ) S2

Figure 3.2. A Sierpiński gasket subsystem.

We summarize some preliminary results for subsystems in the following proposition.
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Proposition 3.9 (Z. Li, X. Shi, Y. Zhang [LSZ25]). Let f : S2 → S2 be an expanding Thurston
map with a Jordan curve C ⊆ S2 satisfying post f ⊆ C. Consider F ∈ Sub(f, C). Consider arbitrary
n, k ∈ N0. Then the following statements hold:

(i) If X ∈ Xn+k(F, C) is any (n + k)-tile of F , then F k(X) is an n-tile of F , and F k|X is a
homeomorphism of X onto F k(X). As a consequence, we have

{
F k(X) : X ∈ Xn+k(F, C)

}
⊆

Xn(F, C).
(ii) The tile maximal invariant set Ω is forward invariant with respect to F , i.e., F (Ω) ⊆ Ω.
(iii) If f(C) ⊆ C, then

∪
Xn+k(F, C) ⊆

∪
Xn(F, C) ⊆

∪
X1(F, C) = dom(F ) for all n, k ∈ N.

(iv) If f(C) ⊆ C and F ∈ Sub∗(f, C), then F (Ω) = Ω ̸= ∅.

Proposition 3.9 (i) and (ii) are from [LSZ25, Proposition 5.4 (i) and (iii)]. Proposition 3.9 (iii) is
from [LSZ25, Proposition 5.5 (i)]. Proposition 3.9 (iv) is from [LSZ25, Proposition 5.6 (ii)].

We introduce the following concepts of degrees and local degrees for subsystems.

Definition 3.10 (Degrees). Let f : S2 → S2 be an expanding Thurston map with a Jordan curve
C ⊆ S2 satisfying post f ⊆ C. Consider F ∈ Sub(f, C). The degree of F is defined as

degF := sup
{
card

(
F−1({y})

)
: y ∈ S2

}
.

Consider arbitrary x ∈ S2 and n ∈ N. We define the black degree of Fn at x as
degb(F

n, x) := card({X ∈ Xnb (F, C) : x ∈ X}).
Similarly, we define the white degree of Fn at x as

degw(F
n, x) := card({X ∈ Xnw(F, C) : x ∈ X}).

Furthermore, for each pair of c, s ∈ {b,w} we define
degcs(F

n, x) := card({X ∈ Xncs(F, C) : x ∈ X}).

Definition 3.11 (Irreducibility). Let f : S2 → S2 be an expanding Thurston map with a Jordan
curve C ⊆ S2 satisfying post f ⊆ C. Consider F ∈ Sub(f, C). We say F is an irreducible (resp. a
strongly irreducible) subsystem (of f with respect to C) if for each pair of c, s ∈ {b,w}, there exists
an integer n = n(c, s) ∈ N and Xn ∈ Xncs

c (F, C) satisfying Xn ⊆ X0
s (resp. Xn ⊆ inte

(
X0

s

)
). We

denote by nF the constant maxc, s∈{b,w} n(c, s), which depends only F and C.

Obviously, if F is irreducible then C(F, C) = {b,w} and F (dom(F )) = S2.

Definition 3.12 (Primitivity). Let f : S2 → S2 be an expanding Thurston map with a Jordan curve
C ⊆ S2 satisfying post f ⊆ C. Consider F ∈ Sub(f, C). We say that F is a primitive (resp. strongly
primitive) subsystem (of f with respect to C) if there exists an integer nF ∈ N such that for each
pair of c, s ∈ {b,w} and each integer n ⩾ nF , there exists Xn ∈ Xnc (F, C) satisfying Xn ⊆ X0

s (resp.
Xn ⊆ inte

(
X0

s

)
).

We record [LSZ25, Lemmas 5.21 and 5.22] below.

Lemma 3.13 (Z. Li, X. Shi, Y. Zhang [LSZ25]). Let f : S2 → S2 be an expanding Thurston map
with a Jordan curve C ⊆ S2 satisfying post f ⊆ C. Let F ∈ Sub(f, C) be irreducible (resp. strongly
irreducible). Let nF ∈ N be the constant from Definition 3.11, which depends only on F and C. Then
for each k ∈ N0, each c ∈ {b,w}, and each k-tile Xk ∈ Xk(F, C), there exists an integer n ∈ N with
n ⩽ nF and Xk+n

c ∈ Xk+nc (F, C) satisfying Xk+n
c ⊆ Xk (resp. Xk+n

c ⊆ inte(Xk)).

Lemma 3.14 (Z. Li, X. Shi, Y. Zhang [LSZ25]). Let f : S2 → S2 be an expanding Thurston map
with a Jordan curve C ⊆ S2 satisfying post f ⊆ C. Let F ∈ Sub(f, C) be primitive (resp. strongly
primitive). Let nF ∈ N be the constant from Definition 3.12, which depends only on F and C. Then
for each n ∈ N with n ⩾ nF , each m ∈ N0, each c ∈ {b,w}, and each m-tile Xm ∈ Xm(F, C), there
exists an (n+m)-tile Xn+m

c ∈ Xn+mc (F, C) such that Xn+m
c ⊆ Xm (resp. Xn+m

c ⊆ inte(Xm)).
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The following distortion lemma established in [LSZ25, Lemma 5.25 (ii)] serves as a cornerstone in
the development of thermodynamic formalism for subsystems of expanding Thurston maps.

Lemma 3.15 (Z. Li, X. Shi, Y. Zhang [LSZ25]). Let f : S2 → S2 be an expanding Thurston map,
and C ⊆ S2 be a Jordan curve that satisfies post f ⊆ C and f(C) ⊆ C. Consider F ∈ Sub(f, C). Let
d be a visual metric on S2 for f with expansion factor Λ > 1. Let ϕ ∈ C0,β(S2, d) be a real-valued
Hölder continuous function with an exponent β ∈ (0, 1].

If F is irreducible, then there exists a constant C̃ ⩾ 1 depending only on F , C, d, ϕ, and β such
that for each n ∈ N0, each pair of c, s ∈ C(F, C), each x ∈ X0

c , and each y ∈ X0
s , we have

(3.12)
∑

Xn
c ∈Xn

c (F,C) exp
(
SFn ϕ

(
(Fn|Xn

c
)−1(x)

))∑
Xn

s ∈Xn
s (F,C) exp

(
SFn ϕ

(
(Fn|Xn

s
)−1(y)

)) ⩽ C̃.

Quantitatively, we choose

(3.13) C̃ := (deg f)nF exp
(
2nF ∥ϕ∥∞ + C1(diamd(S

2))β
)
,

where nF ∈ N is the constant in Definition 3.11 and depends only on F and C, and C1 ⩾ 0 is the
constant defined in (3.9) in Lemma 3.4 and depends only on f , C, d, ϕ, and β.

3.4. Ergodic theory of subsystems. In this subsection, we review some concepts and results
on the ergodic theory of subsystems of expanding Thurston maps. We refer the reader to [LSZ25,
Section 6] for details.

We first define the topological pressure for subsystems.

Definition 3.16 (Topological pressure). Let f : S2 → S2 be an expanding Thurston map with a
Jordan curve C ⊆ S2 satisfying post f ⊆ C. Consider F ∈ Sub(f, C). For a real-valued function
φ : S2 → R, we denote

Zn(F,φ) :=
∑

Xn∈Xn(F,C)

exp
(
sup
{
SFn φ(x) : x ∈ Xn

})
for each n ∈ N. We define the topological pressure of F with respect to the potential φ by

(3.14) P (F,φ) := lim inf
n→+∞

1

n
log(Zn(F,φ)).

We denote
(3.15) φ := φ− P (F,φ).

Remark. We note that the definition (3.14) used here differs from the classical definition in (3.1) pre-
sented in Subsection 3.1, which applies to F |Ω and φ|Ω. Indeed, they coincide in our context, namely,
for a strongly irreducible subsystem and a Hölder continuous potential (see (3.29) in Theorem 3.27).

We introduce the notion of the split sphere (see Definition 3.17), and set up some identifications
and conventions (see Remarks 3.18 and 3.19), which will be used frequently in this paper.

Definition 3.17. Let f : S2 → S2 be an expanding Thurston map with a Jordan curve C ⊆ S2

satisfying post f ⊆ C. We define the split sphere S̃ to be the disjoint union of X0
b and X0

w, i.e.,

S̃ := X0
b ⊔X0

w =
{
(x, c) : c ∈ {b,w}, x ∈ X0

c

}
.

For each c ∈ {b,w}, let

(3.16) ic : X
0
c → S̃

be the natural injection (defined by ic(x) := (x, c)). Recall that the topology on S̃ is defined as the
finest topology on S̃ for which both the natural injections ib and iw are continuous. In particular, S̃
is compact and metrizable.
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Notational Remark. From now on, we write
(µb, µw)(Ab, Aw) := µb(Ab) + µw(Aw),

⟨(µb, µw), (ub, uw)⟩ := ⟨µb, ub⟩+ ⟨µw, uw⟩ =
∫
X0

b

ub dµb +

∫
X0

w

uw dµw,

whenever (µb, µw) ∈ M
(
X0

b

)
×M

(
X0

w

)
, (ub, uw) ∈ B

(
X0

b

)
×B

(
X0

w

)
, and Ab and Aw are Borel subset

of X0
b and X0

w, respectively. In particular, for each Borel set A ⊆ S2, we define
(3.17) (µb, µw)(A) := (µb, µw)

(
A ∩X0

b , A ∩X0
w

)
= µb

(
A ∩X0

b

)
+ µw

(
A ∩X0

w

)
.

Remark 3.18. The product space C
(
X0

b

)
×C

(
X0

w

)
(resp. B

(
X0

b

)
×B

(
X0

w

)
) can be naturally iden-

tified with C(S̃) (resp. B(S̃)). Similarly, the product space M
(
X0

b

)
×M

(
X0

w

)
can be identified with

M(S̃). Under such identifications, we write∫
(ub, uw) d(µb, µw) := ⟨(µb, µw), (ub, uw)⟩ and (ub, uw)(µb, µw) := (ubµb, uwµw)

whenever (µb, µw) ∈ M
(
X0

b

)
×M

(
X0

w

)
and (ub, uw) ∈ B

(
X0

b

)
×B

(
X0

w

)
.

Moreover, we have the following natural identification of P(S̃):

P(S̃) =
{
(µb, µw) ∈ M

(
X0

b

)
×M

(
X0

w

)
: µb and µw are positive measures, µb

(
X0

b

)
+ µw

(
X0

w

)
= 1
}
.

Here we follow the terminology in [Fol99, Section 3.1] that a positive measure is a signed measure
that takes values in [0,+∞].

Remark 3.19. It is easy to see that (3.17) defines a finite signed Borel measure µ := (µb, µw) on S2.
Here we use the notation µ (resp. (µb, µw)) when we view the measure as a measure on S2 (resp. S̃),
and we will always use these conventions in this paper. In this sense, for each u ∈ B(S2) we have

(3.18) ⟨µ, u⟩ =
∫
udµ =

∫
(ub, uw) d(µb, µw) =

∫
X0

b

udµb +

∫
X0

w

udµw,

where ub := u|X0
b

and uw := u|X0
w

. Moreover, if both µb and µw are positive measures and µb
(
X0

b

)
+

µw
(
X0

w

)
= 1, then µ = (µb, µw) defined by (3.17) is a Borel probability measure on S2. In view of

the identifications in Remark 3.18, this means that if (µb, µw) ∈ P(S̃), then µ ∈ P(S2).

We next introduce the split Ruelle operator and its adjoint operator, which are the main tools
in [LSZ25] and this paper to develop the thermodynamic formalism for subsystems of expanding
Thurston maps. We summarize relevant definitions and facts about the split Ruelle operator and its
adjoint operator, and refer the reader to [LSZ25, Subsections 6.2 and 6.4] for details.

Definition 3.20 (Partial split Ruelle operators). Let f : S2 → S2 be an expanding Thurston map
with a Jordan curve C ⊆ S2 satisfying post f ⊆ C. Consider F ∈ Sub(f, C) and φ ∈ C(S2). We
define a map L(n)

F,φ,c,s : B
(
X0

s

)
→ B

(
X0

c

)
, for c, s ∈ {b,w}, and n ∈ N0, by

L(n)
F,φ,c,s(u)(y) :=

∑
x∈F−n(y)

degcs(F
n, x)u(x) exp

(
SFn φ(x)

)
=

∑
Xn∈Xn

cs(F,C)

u
(
(Fn|Xn)−1(y)

)
exp
(
SFn φ

(
(Fn|Xn)−1(y)

))(3.19)

for each real-valued bounded Borel function u ∈ B
(
X0

s

)
and each point y ∈ X0

c .

Definition 3.21 (Split Ruelle operators). Let f : S2 → S2 be an expanding Thurston map with a
Jordan curve C ⊆ S2 satisfying post f ⊆ C. Consider F ∈ Sub(f, C) and φ ∈ C(S2). The split Ruelle
operator for the subsystem F and the potential φ

LF,φ : C
(
X0

b

)
× C

(
X0

w

)
→ C

(
X0

b

)
× C

(
X0

w

)
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on the product space C
(
X0

b

)
× C

(
X0

w

)
is defined by

(3.20) LF,φ(ub, uw) :=
(
L(1)
F,φ,b,b(ub) + L(1)

F,φ,b,w(uw),L
(1)
F,φ,w,b(ub) + L(1)

F,φ,w,w(uw)
)

for each ub ∈ C
(
X0

b

)
and each uw ∈ C

(
X0

w

)
.

The following lemma proved in [LSZ25, Lemma 6.10] shows that the split Ruelle operator is well-
behaved under iterations.

Lemma 3.22 (Z. Li, X. Shi, Y. Zhang [LSZ25]). Let f : S2 → S2 be an expanding Thurston map with
a Jordan curve C ⊆ S2 satisfying post f ⊆ C and f(C) ⊆ C. Consider F ∈ Sub(f, C) and φ ∈ C(S2).
We assume in addition that F (dom(F )) = S2. Then for all n ∈ N0, ub ∈ C

(
X0

b

)
, and uw ∈ C

(
X0

w

)
,

(3.21) LnF,φ(ub, uw) =
(
L(n)
F,φ,b,b(ub) + L(n)

F,φ,b,w(uw), L(n)
F,φ,w,b(ub) + L(n)

F,φ,w,w(uw)
)
.

Let f : S2 → S2 be an expanding Thurston map with a Jordan curve C ⊆ S2 satisfying post f ⊆ C.
Consider F ∈ Sub(f, C) and φ ∈ C(S2). We assume in addition that F (dom(F )) = S2. Note that the
split Ruelle operator LF,φ (see Definition 3.21) is a positive, continuous operator on C

(
X0

b

)
×C

(
X0

w

)
.

Thus, the adjoint operator

L∗
F,φ :

(
C
(
X0

b

)
× C

(
X0

w

))∗ → (
C
(
X0

b

)
× C

(
X0

w

))∗
of LF,φ acts on the dual space

(
C
(
X0

b

)
× C

(
X0

w

))∗ of the Banach space C
(
X0

b

)
× C

(
X0

w

)
. By the

Riesz representation theorem (see [Fol99, Theorems 7.17 and 7.8]) and [LSZ25, Proposition 6.12],
we can identify

(
C
(
X0

b

)
× C

(
X0

w

))∗ with the product of spaces of finite signed Borel measures
M
(
X0

b

)
×M

(
X0

w

)
, where we use the norm ∥(ub, uw)∥ := max{∥ub∥, ∥uw∥} on C

(
X0

b

)
×C

(
X0

w

)
, the

corresponding operator norm on
(
C
(
X0

b

)
× C

(
X0

w

))∗, and the norm ∥(µb, µw)∥ := ∥µb∥ + ∥µw∥ on
M
(
X0

b

)
× M

(
X0

w

)
. Then by Remark 3.18, we can also view LF,φ (resp. L∗

F,φ) as an operator on
C(S̃) (resp. M(S̃)).

We record the following three results (Lemma 3.23, Theorems 3.25, and 3.26) on the split Ruelle
operators and their adjoint operators for subsystems.

Lemma 3.23 (Z. Li, X. Shi, Y. Zhang [LSZ25]). Let f : S2 → S2 be an expanding Thurston map with
a Jordan curve C ⊆ S2 satisfying post f ⊆ C and f(C) ⊆ C. Let F ∈ Sub(f, C) be irreducible. Let d be
a visual metric on S2 for f with expansion factor Λ > 1. Let ϕ ∈ C0,β(S2, d) be a real-valued Hölder
continuous function with an exponent β ∈ (0, 1]. Then there exists a constant C̃1 ⩾ 0 depending only
on F , C, d, ϕ, and β such that for each n ∈ N, each c ∈ {b,w}, and each pair of x, y ∈ X0

c , the
following inequalities holds:

Ln
F,ϕ

(
1
S̃

)
(x̃)
/
Ln
F,ϕ

(
1
S̃

)
(ỹ) ⩽ exp

(
C1d(x, y)

β
)
⩽ C̃,

C̃−1 ⩽ Ln
F,ϕ

(
1
S̃

)
(x̃) ⩽ C̃,(3.22) ∣∣Ln

F,ϕ

(
1
S̃

)
(x̃)− Ln

F,ϕ

(
1
S̃

)
(ỹ)
∣∣ ⩽ C̃

(
exp
(
C1d(x, y)

β
)
− 1
)
⩽ C̃1d(x, y)

β,(3.23)

where x̃ := ic(x) = (x, c) ∈ S̃, ỹ := ic(y) = (y, c) ∈ S̃ (recall Remark 3.18), C1 ⩾ 0 is the constant in
Lemma 3.4 depending only on f , C, d, ϕ, and β, and C̃ ⩾ 1 is the constant in Lemma 3.15 depending
only on F , C, d, ϕ, and β.

Recall from (3.15) that ϕ = ϕ− P (F, ϕ). Lemma 3.23 was proved in [LSZ25, Lemma 6.21].

Definition 3.24 (Gibbs measures for subsystems). Let f : S2 → S2 be an expanding Thurston map
with a Jordan curve C ⊆ S2 satisfying post f ⊆ C. Consider F ∈ Sub(f, C). Let d be a visual metric
on S2 for f and ϕ be a real-valued Hölder continuous function on S2 with respect to the metric d. A
Borel probability measure µ ∈ P(S2) is called a Gibbs measure with respect to F , C, and ϕ if there
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exist constants Pµ ∈ R and Cµ ⩾ 1 such that for each n ∈ N0, each n-tile Xn ∈ Xn(F, C), and each
x ∈ Xn, we have

(3.24) 1

Cµ
⩽ µ(Xn)

exp(SFn ϕ(x)− nPµ)
⩽ Cµ.

Theorem 3.25 (Z. Li, X. Shi, Y. Zhang [LSZ25]). Let f : S2 → S2 be an expanding Thurston map
with a Jordan curve C ⊆ S2 satisfying post f ⊆ C and f(C) ⊆ C. Consider F ∈ Sub(f, C). We
assume in addition that F (dom(F )) = S2. Let d be a visual metric on S2 for f and ϕ be a real-valued
Hölder continuous function on S2 with respect to the metric d. Then there exists a Borel probability
measure mF,ϕ = (mb,mw) ∈ P(S̃) such that
(3.25) L∗

F,ϕ(mb,mw) = κ(mb,mw),

where κ =
⟨
L∗
F,ϕ(mb,mw),1S̃

⟩
. Moreover, if F is strongly irreducible, then any mF,ϕ = (mb,mw) ∈

P(S̃) that satisfies (3.25) for some κ > 0 has the following properties:

(i) mF,ϕ

(∪+∞
j=0 f

−j(C)
)
= 0.

(ii) For each Borel set A ⊆ dom(F ) on which F is injective, mF,ϕ(F (A)) =
∫
A κ exp(−ϕ) dmF,ϕ.

(iii) The measure mF,ϕ is a Gibbs measure with respect to F , C, and ϕ with PmF,ϕ
= P (F, ϕ) =

log κ. Here P (F, ϕ) is defined by (3.14).

We follow the conventions discussed in Remarks 3.18 and 3.19. In particular, we use the notation
(mb,mw) (resp. mF,ϕ) to emphasize that we treat the eigenmeasure as a Borel probability measure
on S̃ (resp. S2).

The existence of eigenmeasure (mb,mw) in Theorem 3.25 is part of [LSZ25, Theorem 6.16]. The-
orem 3.25 (i) was established in [LSZ25, Proposition 6.26]. Theorem 3.25 (ii) and (iii) follow imme-
diately from [LSZ25, Proposition 6.28 (i) and (ii)].

The next theorem was established in [LSZ25, Theorem 6.24].

Theorem 3.26 (Z. Li, X. Shi, Y. Zhang [LSZ25]). Let f : S2 → S2 be an expanding Thurston
map with a Jordan curve C ⊆ S2 satisfying post f ⊆ C and f(C) ⊆ C. Let F ∈ Sub(f, C) be
strongly irreducible. Let d be a visual metric on S2 for f with expansion factor Λ > 1. Let
ϕ ∈ C0,β(S2, d) be a real-valued Hölder continuous function with an exponent β ∈ (0, 1]. Then the
sequence

{
1
n

∑n−1
j=0 L

j

F,ϕ

(
1
S̃

)}
n∈N converges uniformly to a function ũF,ϕ = (ub, uw) ∈ C0,β

(
X0

b , d
)
×

C0,β
(
X0

w, d
)
, which satisfies

LF,ϕ(ũF,ϕ) = ũF,ϕ and(3.26)

C̃−1 ⩽ ũF,ϕ(x̃) ⩽ C̃ for each x̃ ∈ S̃,(3.27)

where C̃ ⩾ 1 is the constant from Lemma 3.15 depending only on f , C, d, ϕ, and β. Moreover, if we
let mF,ϕ = (mb,mw) be an eigenmeasure from Theorem 3.25, then∫

S̃
ũF,ϕ d(mb,mw) = 1,

and µF,ϕ = (µb, µw) := ũF,ϕ(mb,mw) is an f -invariant Gibbs measure with respect to F , C, and ϕ,
with µF,ϕ(Ω(F, C)) = 1 and

(3.28) PµF,ϕ
= PmF,ϕ

= P (F, ϕ) = lim
n→+∞

1

n
log
(
LnF,ϕ

(
1
S̃

)
(ỹ)
)
,

for each ỹ ∈ S̃. In particular, µF,ϕ(U) ̸= 0 for each open set U ⊆ S2 with U ∩ Ω(F, C) ̸= ∅.

We record the following Variational Principle and the existence of equilibrium states for subsystems
established in [LSZ25, Theorems 6.29 and 6.30]. Recall that F (Ω) ⊆ Ω by Proposition 3.9 (ii).
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Theorem 3.27 (Z. Li, X. Shi, Y. Zhang [LSZ25]). Let f : S2 → S2 be an expanding Thurston map
with a Jordan curve C ⊆ S2 satisfying post f ⊆ C and f(C) ⊆ C. Let F ∈ Sub(f, C) be strongly
irreducible. Let d be a visual metric on S2 for f and ϕ be a real-valued Hölder continuous function
on S2 with respect to the metric d. Then we have

(3.29) P (F, ϕ) = P (F |Ω, ϕ|Ω) = sup
{
hµ(F |Ω) +

∫
Ω
ϕ dµ : µ ∈ M(Ω, F |Ω)

}
,

and there exists an equilibrium state for F |Ω and ϕ|Ω, where P (F, ϕ) is defined by (3.14) and
P (F |Ω, ϕ|Ω) is defined by (3.1).

Moreover, any measure µF,ϕ ∈ M(S2, f) defined in Theorem 3.26 is an equilibrium state for F |Ω
and ϕ|Ω, and the map F |Ω with respect to such µF,ϕ is forward quasi-invariant (i.e., for each Borel
set A ⊆ Ω, if µF,ϕ(A) = 0, then µF,ϕ((F |Ω)(A)) = 0).

4. The Assumptions

We state below the hypotheses under which we will develop our theory in most parts of this paper.
We will selectively use some of the following assumptions in the remaining part of the paper.

The Assumptions.
(1) f : S2 → S2 is an expanding Thurston map.
(2) C ⊆ S2 is a Jordan curve containing post f with the property that there exists an integer

nC ∈ N such that fnC(C) ⊆ C and fm(C) ̸⊆ C for each m ∈ {1, . . . , nC − 1}.
(3) F ∈ Sub(f, C) is a subsystem of f with respect to C.
(4) d is a visual metric on S2 for f with expansion factor Λ > 1.
(5) β ∈ (0, 1].
(6) ϕ ∈ C0,β(S2, d) is a real-valued Hölder continuous function with an exponent β.

Observe that by Lemma 3.5, for each f in (1), there exists at least one Jordan curve C that satisfies
(2). Since for a fixed f , the number nC is uniquely determined by C in (2), in this paper, we will say
that a quantity depends on C even if it also depends on nC .

Recall that the expansion factor Λ of a visual metric d on S2 for f is uniquely determined by d
and f . We will say that a quantity depends on f and d if it depends on Λ.

In the discussion below, depending on the conditions we will need, we will sometimes say “Let f ,
C, d, ϕ satisfy the Assumptions.”, and sometimes say “Let f and C satisfy the Assumptions.”, etc.

5. Uniqueness of the equilibrium states for subsystems

This section is devoted to the uniqueness of the equilibrium states for subsystems, with the main
result being Theorem 5.1. We first define normalized split Ruelle operators and obtain some basic
properties in Subsection 5.1. Then in Subsection 5.2 we introduce the notion of abstract modulus of
continuity and prove the uniform convergence for functions under iterations of the normalized split
Ruelle operators. Finally, in Subsection 5.3 we establish Theorem 5.1.

Theorem 5.1. Let f , C, F , d, ϕ satisfy the Assumptions in Section 4. We assume in addition that
f(C) ⊆ C and F ∈ Sub(f, C) is strongly primitive. Denote Ω := Ω(F, C) and FΩ := F |Ω. Then there
exists a unique equilibrium state µF,ϕ for FΩ and ϕ|Ω. Moreover, the map FΩ with respect to µF,ϕ is
forward quasi-invariant (i.e., for each Borel set A ⊆ Ω, if µF,ϕ(A) = 0, then µF,ϕ(FΩ(A)) = 0).

We adopt the following convention.

Remark 5.2. Let X be a non-empty Borel subset of S2. Given a Borel probability measure µ ∈
P(X), by abuse of notation, we can view µ as a Borel probability measure on S2 by setting µ(A) :=
µ(A∩X) for all Borel subsets A ⊆ S2. Conversely, for each measure ν ∈ P(S2) supported on X, we
can view ν as a Borel probability measure on X.
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In the proof of the uniqueness of the equilibrium state of a continuous map g on a compact metric
space X, one of the techniques is to prove the (Gâteaux) differentiability of the topological pressure
function. We summarize the general ideas below, but refer the reader to [PU10, Section 3.6] for a
detailed treatment.

Let (X, d) be a compact metric space and g : X → X be a continuous map. We assume that
the topological entropy htop(g) is finite. Then the topological pressure function P (g, · ) : C(X) → R
is Lipschitz continuous [Wal82, Theorem 9.7 (iv)] and convex [Wal82, Theorem 9.7 (v)]. For an
arbitrary convex continuous function Q : V → R on a real topological vector space V , we call a
continuous linear functional L : V → R tangent to Q at x ∈ V if

(5.1) Q(x) + L(y) ⩽ Q(x+ y), for each y ∈ V.

We denote the set of all continuous linear functionals tangent to Q at x ∈ V by V ∗
x,Q. It is known (see

for example, [Wal82, Theorem 9.14]) that if µ ∈ M(X, g) is an equilibrium state for g and φ ∈ C(X),
then the continuous linear functional u 7→

∫
udµ for u ∈ C(X) is tangent to the topological pressure

function P (g, · ) at φ. Indeed, let φ, γ ∈ C(X), and µ ∈ M(X, g) be an equilibrium state for g and
φ. Then P (g, φ+ γ) ⩾ hµ(g) +

∫
(φ+ γ) dµ by the Variational Principle (3.4) in Subsection 3.1, and

P (g, φ) = hµ(g) +
∫
φdµ. It follows that P (g, φ) +

∫
γ dµ ⩽ P (g, φ+ γ).

Thus, to prove the uniqueness of the equilibrium state for a continuous map g : X → X and a
continuous potential φ, it suffices to show that card

(
C(X)∗φ,P (g,· )

)
= 1. Then we can apply the

following fact from functional analysis (see [PU10, Theorem 3.6.5] for a proof):

Theorem 5.3 (F. Przytycki & M. Urbański [PU10]). Let V be a separable Banach space and Q : V →
R be a convex continuous function. Then for each x ∈ V , the following statements are equivalent:

(i) card
(
V ∗
x,Q

)
= 1.

(ii) The function t 7→ Q(x+ ty) is differentiable at 0 for each y ∈ V .

(iii) There exists a subset U ⊆ V that is dense in the weak topology on V such that the function
t 7→ Q(x+ ty) is differentiable at 0 for each y ∈ U .

Now the problem of the uniqueness of equilibrium state transforms to the problem of (Gâteaux)
differentiability of the topological pressure function. To investigate the latter, we need a closer study
of the fine properties of split Ruelle operators.

5.1. Normalized split Ruelle operator. In this subsection, we define normalized split Ruelle
operators and establish some basic properties that will be frequently used later.

Let f : S2 → S2 be an expanding Thurston map with a Jordan curve C ⊆ S2 satisfying post f ⊆ C
and f(C) ⊆ C. Let d be a visual metric for f on S2, and ϕ ∈ C0,β(S2, d) a real-valued Hölder
continuous function with an exponent β ∈ (0, 1]. Let X0

b , X
0
w ∈ X0(f, C) be the black 0-tile and

the white 0-tile, respectively. Recall from Definition 3.17 and Remark 3.18 that S̃ = X0
b ⊔ X0

w is
the disjoint union of X0

b and X0
w, and the product spaces C

(
X0

b

)
× C

(
X0

w

)
, B
(
X0

b

)
× B

(
X0

w

)
, and

M
(
X0

b

)
×M

(
X0

w

)
are identified with C(S̃), B(S̃), and M(S̃), respectively.

Let F ∈ Sub(f, C) be strongly irreducible and ũF,ϕ = (ub, uw) ∈ C(S̃) be the function given by
Theorem 3.26. Note that ũF,ϕ(x̃) > 0 for each x̃ ∈ S̃ = X0

b ⊔X0
w by (3.27) in Theorem 3.26. Recall

from (3.15) that ϕ = ϕ− P (F, ϕ).

Definition 5.4 (Partial normalized split Ruelle operator). Let f , C, F , d, ϕ satisfy the Assumptions
in Section 4. We assume in addition that f(C) ⊆ C and F ∈ Sub(f, C) is strongly irreducible. For
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each n ∈ N0 and each pair of c, s ∈ {b,w}, we define a map L̃(n)
F,ϕ,c,s : B

(
X0

s

)
→ B(X0

c ) by

L̃(n)
F,ϕ,c,s(v)(x)

:=
∑

y∈F−n(x)

degcs(F
n, y)v(y) exp

(
SFn ϕ(y)− nP (F, ϕ) + log us(y)− log uc(x)

)
=

∑
y=(Fn|Xn )−1(x)
Xn∈Xn

cs(F,C)

v(y) exp
(
SFn ϕ(y)− nP (F, ϕ) + log us(y)− log uc(x)

)(5.2)

for each v ∈ B
(
X0

s

)
and each point x ∈ X0

c .

Remark. By (3.19) in Definition 3.20, we can write the right hand side of (5.2) as

L̃(n)
F,ϕ,c,s(v)(x)

=
1

uc(x)

∑
Xn∈Xn

cs(F,C)

(us · v)
(
(Fn|Xn)−1(x)

)
exp
(
SFn ϕ

(
(Fn|Xn)−1(x)

)
− nP (F, ϕ)

)
=

1

uc(x)
L(n)

F,ϕ,c,s
(usv)(x).

(5.3)

Thus, it follows immediately from [LSZ25, Lemma 6.8] that for all n, k ∈ N0, c, s ∈ {b,w}, and
v ∈ C

(
X0

s

)
,

(5.4) L̃(n)
F,ϕ,c,s(v) ∈ C

(
X0

c

)
and

(5.5) L̃(n+k)
F,ϕ,c,s(v) =

∑
t∈{b,w}

L̃(n)
F,ϕ,c,t

(
L̃(k)
F,ϕ,t,s(v)

)
.

Definition 5.5 (Normalized split Ruelle operators). Let f , C, F , d, ϕ satisfy the Assumptions in
Section 4. We assume in addition that f(C) ⊆ C and F ∈ Sub(f, C) is strongly irreducible. Let
ũF,ϕ = (ub, uw) ∈ C(S̃) be the continuous function given by Theorem 3.26. The normalized split
Ruelle operator L̃F,ϕ : C

(
X0

b

)
×C

(
X0

w

)
→ C

(
X0

b

)
×C

(
X0

w

)
for the subsystem F and the potential ϕ

is defined by

(5.6) L̃F,ϕ(vb, vw) :=
(
L̃(1)
F,ϕ,b,b(ub) + L̃(1)

F,ϕ,b,w(uw), L̃
(1)
F,ϕ,w,b(ub) + L̃(1)

F,ϕ,w,w(uw)
)

for each vb ∈ C
(
X0

b

)
and each vw ∈ C

(
X0

w

)
, or equivalently, L̃F,ϕ : C(S̃) → C(S̃) is defined by

(5.7) L̃F,ϕ(ṽ) :=
1

ũF,ϕ
LF,ϕ(ũF,ϕṽ)

for each ṽ ∈ C(S̃).

Note that by (5.2) and (5.4), the normalized split Ruelle operator L̃F,ϕ is well-defined, and the
equivalence of the two definitions (5.6) and (5.7) follows from (5.3) and Definition 3.21. By (5.2),
L̃0
F,ϕ is the identity map on C(S̃). Moreover, one sees that L̃F,ϕ : C

(
X0

b

)
×C

(
X0

w

)
→ C

(
X0

b

)
×C

(
X0

w

)
has a natural extension to the space B

(
X0

b

)
×B

(
X0

w

)
given by (5.6) for each vb ∈ B

(
X0

b

)
and each

vw ∈ B
(
X0

w

)
.

We show that the normalized split Ruelle operator L̃F,ϕ is well-behaved under iterations.

Lemma 5.6. Let f , C, F , d, ϕ satisfy the Assumptions in Section 4. We assume in addition that
f(C) ⊆ C and F ∈ Sub(f, C) is strongly irreducible. Then for all n ∈ N0 and ṽ = (vb, vw) ∈ C(S̃), we
have

(5.8) L̃nF,ϕ(ṽ) =
1

ũF,ϕ
Ln
F,ϕ

(ũF,ϕṽ) and
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(5.9) L̃nF,ϕ(vb, vw) =
(
L̃(n)
F,ϕ,b,b(vb) + L̃(n)

F,ϕ,b,w(vw), L̃(n)
F,ϕ,w,b(vb) + L̃(n)

F,ϕ,w,w(vw)
)
.

Proof. It follows immediately from (5.7) and Definition 3.21 that (5.8) holds for all n ∈ N. Since F is
surjective, i.e., F (dom(F )) = S2, we know that L0

F,ϕ is the identity map on C(S̃) by Definition 3.21.
Thus (5.8) also holds for n = 0.

The case where n = 0 and the case where n = 1 both hold by definition. Assume now (5.9) holds
for n = k for some k ∈ N. Then by Definition 5.5 and (5.5), for each c ∈ {b,w} we have

πc
(
L̃k+1
F,ϕ (vb, vw)

)
= πc

(
L̃F,ϕ

(
L̃(k)
F,ϕ,b,b(vb) + L̃(k)

F,ϕ,b,w(vw), L̃
(k)
F,ϕ,w,b(vb) + L̃(k)

F,ϕ,w,w(vw)
))

=
∑

s∈{b,w}

L̃(1)
F,ϕ,c,s

(
L̃(k)
F,ϕ,s,b(vb) + L̃(k)

F,ϕ,s,w(vw)
)

=
∑

t∈{b,w}

∑
s∈{b,w}

L̃(1)
F,ϕ,c,s

(
L̃(k)
F,ϕ,s,t(vt)

)
=

∑
t∈{b,w}

L̃(k+1)
F,ϕ,c,t(vt),

for vb ∈ C
(
X0

b

)
and vw ∈ C

(
X0

w

)
. This completes the inductive step, establishing (5.9). □

Remark. Similarly, one can show that (5.8) and (5.9) hold for ṽ = (vb, vw) ∈ B
(
X0

b

)
×B

(
X0

w

)
.

Consider (mb,mw) ∈ P(S̃) from Theorem 3.25. By Theorem 3.25 (iii), L∗
F,ϕ

(mb,mw) = (mb,mw).
Then we can show that (µb, µw) = ũF,ϕ(mb,mw) ∈ P(S̃) defined in Theorem 3.26 satisfies

(5.10) L̃∗
F,ϕ(µb, µw) = (µb, µw),

where L̃∗
F,ϕ is the adjoint operator of L̃F,ϕ on the space M

(
X0

b

)
× M

(
X0

w

)
. Indeed, by (5.7), for

every ṽ ∈ C(S̃),⟨
L̃∗
F,ϕ(µb, µw), ṽ

⟩
=
⟨
ũF,ϕ(mb,mw), L̃F,ϕ(ṽ)

⟩
=
⟨
(mb,mw),LF,ϕ(ũF,ϕṽ)

⟩
=
⟨
L∗
F,ϕ

(mb,mw), ũF,ϕṽ
⟩
= ⟨(mb,mw), ũF,ϕṽ⟩ = ⟨(µb, µw), ṽ⟩.

Recall that we equip the spaces C(S̃) and C
(
X0

b

)
× C

(
X0

w

)
with the uniform norm given by

∥ṽ∥
C(S̃)

= ∥(vb, vw)∥ = max
{
∥vb∥C(X0

b )
, ∥vw∥C(X0

w)

}
for ṽ = (vb, vw) ∈ C

(
X0

b

)
× C

(
X0

w

)
.

Lemma 5.7. Let f , C, F , d, ϕ satisfy the Assumptions in Section 4. We assume in addition that
f(C) ⊆ C and F ∈ Sub(f, C) is strongly irreducible. Then the operator norm of L̃F,ϕ is

∥∥L̃F,ϕ∥∥C(S̃)
= 1.

In addition, L̃F,ϕ
(
1
S̃

)
= 1

S̃
.

Proof. By Definition 5.5, (3.26) in Theorem 3.26, and (5.2) in Definition 5.4, we have

L̃F,ϕ
(
1
S̃

)
=

1

ũF,ϕ
LF,ϕ(ũF,ϕ) = 1

S̃
,

i.e., for each x̃ = (x, c) ∈ S̃,

1 =
∑

s∈{b,w}

∑
X1∈X1

cs(F,C)

exp
(
ϕ(xX1)− P (F, ϕ) + log us(xX1)− log uc(x)

)
,

where we write xX1 := (F |X1)−1(x) for X1 ∈ X1
cs(F, C). Then for each x̃ = (x, c) ∈ S̃ and each

ṽ = (vb, vw) ∈ C
(
X0

b

)
× C

(
X0

w

)
, we have∣∣∣L̃F,ϕ(ṽ)(x̃)∣∣∣ = ∣∣∣∣ ∑

s∈{b,w}

∑
X1∈X1

cs(F,C)

vs(xX1) exp
(
ϕ(xX1)− P (F, ϕ) + log us(xX1)− log uc(x)

)∣∣∣∣
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⩽ ∥ṽ∥
C(S̃)

∣∣∣∣ ∑
s∈{b,w}

∑
X1∈X1

cs(F,C)

exp
(
ϕ(xX1)− P (F, ϕ) + log us(xX1)− log uc(x)

)∣∣∣∣
= ∥ṽ∥

C(S̃)
.

Thus,
∥∥L̃F,ϕ∥∥C(S̃)

⩽ 1. Since L̃F,ϕ
(
1
S̃

)
= 1

S̃
, we get

∥∥L̃F,ϕ∥∥C(S̃)
= 1. □

5.2. Uniform convergence. In this subsection, we prove the uniform convergence of functions
under the iterations of the normalized split Ruelle operators.

Let (X, d) be a metric space. A function η : [0,+∞) → [0,+∞) is an abstract modulus of continuity
if it is continuous at 0, non-decreasing, and η(0) = 0. Given any constant τ ∈ [0,+∞] and any
abstract modulus of continuity η, we define the subclass Cτη (X, d) of C(X) as

Cτη (X, d) :=
{
u ∈ C(X) : ∥u∥∞ ⩽ τ and for x, y ∈ S2, |u(x)− u(y)| ⩽ η(d(x, y))

}
.

Assume now that (X, d) is compact. Then by the Arzelà–Ascoli Theorem, each Cτη (X, d) is pre-
compact in C(X) equipped with the uniform norm. It is easy to see that each Cτη (X, d) is compact.
On the other hand, for v ∈ C(X), we can define an abstract modulus of continuity by
(5.11) η(t) = sup{|v(x)− v(y)| : x, y ∈ X, d(x, y) ⩽ t}
for t ∈ [0,+∞), so that v ∈ Cιη(X, d), where ι = ∥v∥∞.

The following lemma is easy to check (see also [Li17, Lemma 5.24]).

Lemma 5.8. Let (X, d) be a metric space. For all constants τ > 0, τ1, τ2 ⩾ 0 and abstract moduli
of continuity η1, η2, we have{

v1v2 : v1 ∈ Cτ1η1 (X, d), v2 ∈ Cτ2η2 (X, d)
}
⊆ Cτ1τ2τ1η2+τ2η1(X, d),{

1/v : v ∈ Cτ1η1 (X, d), v(x) ⩾ τ for each x ∈ X
}
⊆ Cτ

−1

τ−2η1
(X, d).

Proposition 5.9. Let f , C, F , d, Λ satisfy the Assumptions in Section 4. We assume in addition
that f(C) ⊆ C and F ∈ Sub(f, C) is strongly irreducible. Then for each β ∈ (0, 1], each τ ⩾ 0, and
each K ⩾ 0, there exist constants τ̂ ⩾ 0 and Ĉ ⩾ 0 with the following property:

For each abstract modulus of continuity η, there exists an abstract modulus of continuity η̃ such
that for each ϕ ∈ C0,β(S2, d) with ∥ϕ∥C0,βS2 ⩽ K, we have{

Ln
F,ϕ

(ṽ) : ṽ ∈ Cτη
(
X0

b , d
)
× Cτη

(
X0

w, d
)
, n ∈ N0

}
⊆ C τ̂η̂

(
X0

b , d
)
× C τ̂η̂

(
X0

w, d
)
,(5.12) {

L̃nF,ϕ(ṽ) : ṽ ∈ Cτη
(
X0

b , d
)
× Cτη

(
X0

w, d
)
, n ∈ N0

}
⊆ Cτη̃

(
X0

b , d
)
× Cτη̃

(
X0

w, d
)
,(5.13)

where η̂(t) := Ĉ
(
tβ + η(C0t)

)
is an abstract modulus of continuity, and C0 > 1 is the constant

depending only on f , C, and d from Lemma 3.3.

Proof. We write C̃τη (S̃, d) := Cτη
(
X0

b , d
)
× Cτη

(
X0

w, d
)

for each τ > 0 and each abstract modulus of
continuity η in this proof. For each ṽ ∈ C̃τη (S̃, d), write ṽ = (vb, vw).

Fix arbitrary β ∈ (0, 1], τ ⩾ 0, and K ⩾ 0. By Lemma 3.22 and (3.22) in Lemma 3.23, for all
n ∈ N0, ṽ = (vb, vw) ∈ C̃τη (S̃, d), and ϕ ∈ C0,β(S2, d) with ∥ϕ∥C0,βS2 ≤ K, we have∥∥Ln

F,ϕ
(ṽ)
∥∥
C(S̃)

⩽ ∥ṽ∥
C(S̃)

∥∥Ln
F,ϕ

(1
S̃
)
∥∥
C(S̃)

⩽ C̃∥ṽ∥
C(S̃)

,

where C̃ ⩾ 1 is the constant defined in (3.13) in Lemma 3.15 and depends only on F , C, d, ϕ, and β.
By (3.13), quantitatively,

C̃ = (deg f)nF exp
(
2nF ∥ϕ∥∞ + C1(diamd(S

2))β
)
,

where nF ∈ N is the constant depending only on F and C in Definition 3.12 since F is primitive,
and C1 ⩾ 0 is the constant defined in (3.9) in Lemma 3.4 depends only on F , C, d, ϕ, and β.
Quantitatively, we have

C1 = C0|ϕ|β/
(
1− Λ−β),
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where C0 > 1 is the constant depending only on f , C, and d in Lemma 3.3. Let C ′
1 := C0K/(1−Λ−β)

and
C̃ ′ := (deg f)nF exp

(
2nFK + C ′

1(diamd(S
2))β

)
.

Then we have C1 ⩽ C ′
1 and C̃ ⩽ C̃ ′ for each ϕ ∈ C0,β(S2, d) with ∥ϕ∥C0,βS2 ≤ K. Note that both

C ′
1 and C̃ ′ only depend on F , C, d, K, and β. Thus we can choose τ̂ := C̃ ′τ .
For each c ∈ {b,w} and each pair of x, y ∈ X0

c , we have∣∣∣πc(LnF,ϕ(vb, vw))(x)− πc
(
Ln
F,ϕ

(vb, vw)
)
(y)
∣∣∣

=

∣∣∣∣L(n)

F,ϕ,c,b
(vb)(x) + L(n)

F,ϕ,c,w
(vw)(x)− L(n)

F,ϕ,c,b
(vb)(y)− L(n)

F,ϕ,c,w
(vw)(y)

∣∣∣∣
⩽

∑
s∈{b,w}

∣∣∣∣L(n)

F,ϕ,c,s
(vc)(x)− L(n)

F,ϕ,c,s
(vc)(y)

∣∣∣∣
=

∑
s∈{b,w}

∣∣∣∣ ∑
Xn∈Xn

cs(F,C)

(
vs exp

(
SFn ϕ

))(
(Fn|Xn)−1(x)

)
−
(
vs exp

(
SFn ϕ

))(
(Fn|Xn)−1(y)

)∣∣∣∣
⩽

∑
s∈{b,w}

∣∣∣∣ ∑
Xn∈Xn

cs(F,C)

vs
(
(Fn|Xn)−1(x)

)(
eS

F
n ϕ((F

n|Xn )−1(x)) − eS
F
n ϕ((F

n|Xn )−1(y))
)∣∣∣∣

+
∑

s∈{b,w}

∣∣∣∣ ∑
Xn∈Xn

cs(F,C)

eS
F
n ϕ((F

n|Xn )−1(y))
(
vs
(
(Fn|Xn)−1(x)

)
− vs

(
(Fn|Xn)−1(y)

))∣∣∣∣.
The second term above is

⩽ C̃η(C0Λ
−nd(x, y)) ⩽ C̃η(C0d(x, y)) ⩽ C̃ ′η(C0d(x, y)),

due to (3.22) in Lemma 3.23 and the fact that d
(
(Fn|Xn)−1(x), (Fn|Xn)−1(y)

)
⩽ C0Λ

−nd(x, y) by
Lemma 3.3, where the constant C0 comes from.

To estimate the first term, we use the following general inequality for s, t ∈ R,
| exp(s)− exp(t)| ⩽ (exp(s) + exp(t))(exp(|s− t|)− 1).

Then it follows from Lemma 3.4, Lemma 3.22, and (3.22) in Lemma 3.23 that the first term is

⩽
∑

s∈{b,w}

∑
Xn∈Xn

cs(F,C)

∥vs∥∞
(
eS

F
n ϕ((F

n|Xn )−1(x)) + eS
F
n ϕ((F

n|Xn )−1(y))
)

·
(
e|S

F
n ϕ((F

n|Xn )−1(x))−SF
n ϕ((F

n|Xn )−1(y))| − 1
)

⩽
∑

Xn∈Xn
c (F,C)

τ
(
eS

F
n ϕ((F

n|Xn )−1(x)) + eS
F
n ϕ((F

n|Xn )−1(y))
)(

exp
(
C1d(x, y)

β
)
− 1
)

⩽ 2τC̃
(
exp
(
C1d(x, y)

β
)
− 1
)

⩽ 2τC̃ ′(exp(C ′
1d(x, y)

β
)
− 1
)

⩽ 2τC̃1d(x, y)
β

for some constant C̃1 > 0 that only depends on C ′
1, C̃ ′, and diamd(S

2). Here the justification of the
third inequality above is similar to that of (3.23) in Lemma 3.23. Recall that both C ′

1 and C̃ ′ only
depend on F , C, d, K, and β, so does C̃1.

Hence for each c ∈ {b,w} and each pair of x, y ∈ X0
c , we have∣∣∣πc(LnF,ϕ(vb, vw))(x)− πc

(
Ln
F,ϕ

(vb, vw)
)
(y)
∣∣∣ ⩽ C̃ ′η(C0d(x, y)) + 2τC̃1d(x, y)

β.

By choosing Ĉ := max
{
C̃ ′, 2τC̃1

}
, which only depends on F , C, d, K, and β, we complete the proof

of (5.12).
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We now prove (5.13).
We fix an arbitrary ϕ ∈ C0,β(S2, d) with ∥ϕ∥C0,βS2 ≤ K. Recall that ũF,ϕ = (ub, uw) ∈ C

(
X0

b

)
×

C
(
X0

w

)
is a continuous function on S̃ given by Theorem 3.26. Thus, by (3.27) in Theorem 3.26 we

have
∥ũF,ϕ∥C(S̃)

⩽ τ1,

where τ1 := C̃ ′ = (deg f)nF exp
(
2nFK + C ′

1(diamd(S
2))β

)
. For each c ∈ {b,w} and each pair of

x, y ∈ X0
c , it follows from Theorem 3.26 and (3.23) in Lemma 3.23 that

|uc(x)− uc(y)| =
∣∣∣∣ lim
n→+∞

1

n

n−1∑
j=0

(
Lj
F,ϕ

(
1
S̃

)
(x, c)− Lj

F,ϕ

(
1
S̃

)
(y, c)

)∣∣∣∣
⩽ lim sup

n→+∞

1

n

n−1∑
j=0

∣∣∣Lj
F,ϕ

(
1
S̃

)
(x, c)− Lj

F,ϕ

(
1
S̃

)
(y, c)

∣∣∣
⩽ C̃

(
exp
(
C1d(x, y)

β
)
− 1
)

⩽ C̃ ′(exp(C ′
1d(x, y)

β
)
− 1
)
.

Thus, ũF,ϕ = (ub, uw) ∈ C̃τ1η1 (S̃, d), where η1 is an abstract modulus of continuity defined by

η1(t) := C̃ ′(exp(C ′
1t
β
)
− 1
)
, for t ∈ [0,+∞).

Note that it follows from Lemma 5.8 that{
ṽũF,ϕ : ṽ = (vb, vw) ∈ C̃τη (S̃, d), ϕ ∈ C0,β(S2, d), |ϕ|β ⩽ K

}
⊆ C̃ττ1τη1+τ1η(S̃, d).

Then by (5.8) in Lemma 5.6, (5.12), and Lemma 5.8, we get that there exists a constant τ̃ ⩾ 0 and
an abstract modulus of continuity η̃ such that for each ϕ ∈ C0,β(S2, d) with |ϕ|β ⩽ K,{

L̃nF,ϕ(ṽ) : ṽ = (vb, vw) ∈ C̃τη (S̃, d), n ∈ N0

}
⊆ C̃ τ̃η̃ (S̃, d).

On the other hand, by Lemma 5.7,
∥∥L̃nF,ϕ(ṽ)∥∥C(S̃)

⩽ ∥ṽ∥
C(S̃)

⩽ τ for each ṽ = (vb, vw) ∈ C̃τη (S̃, d),
each n ∈ N0, and each ϕ ∈ C0,β(S2, d). Therefore, we establish (5.13). □
Lemma 5.10. Let f , C, F , d, Λ satisfy the Assumptions in Section 4. We assume in addition that
f(C) ⊆ C and F ∈ Sub(f, C) is strongly primitive. Let η be an abstract modulus of continuity. Then
for each β ∈ (0, 1], each K ∈ [0+∞), and each δ1 ∈ (0,+∞), there exist constants δ2 ∈ (0,+∞) and
N ∈ N with the following property:

For each ṽ = (vb, vw) ∈ C+∞
η

(
X0

b , d
)
× C+∞

η

(
X0

w, d
)
, each ϕ ∈ C0,β(S2, d), and each choice of

(mb,mw) ∈ P(S̃) from Theorem 3.25, if ∥ϕ∥C0,βS2 ⩽ K, ∥ṽ∥
C(S̃)

⩾ δ1, and
∫
ṽũF,ϕ d(mb,mw) = 0,

then ∥∥L̃NF,ϕ(ṽ)∥∥C(S̃)
⩽ ∥ṽ∥

C(S̃)
− δ2.

Remark. Note that at this point, we have yet to prove that (mb,mw) from Theorem 3.25 is unique.
We will prove it in Proposition 5.14. Recall that ũF,ϕ = (ub, uw) ∈ C(S̃) is defined in Theorem 3.26
that depends only on F , C, and ϕ.

Proof. Fix arbitrary constants β ∈ (0, 1], K ∈ [0,+∞), and δ1 ∈ (0,+∞). Fix ϵ > 0 sufficiently small
such that η(ϵ) < δ1/2. Then ϵ depends only on η and δ1. Fix an arbitrary choice of (mb,mw) ∈ P(S̃)
from Theorem 3.25, an arbitrary ϕ ∈ C0,β(S2, d), and an arbitrary ṽ = (vb, vw) ∈ C+∞

η

(
X0

b , d
)
×

C+∞
η

(
X0

w, d
)

with ∥ϕ∥C0,βS2 ⩽ K, ∥ṽ∥
C(S̃)

⩾ δ1, and
∫
ṽũF,ϕ d(mb,mw) = 0.

Let Ω̃ be the subset of S̃ defined by

Ω̃ :=
∩
n∈N

∪
X̃n(F, C),
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where X̃n(F, C) :=
∪

c∈{b,w}
{
ic(X

n) : Xn ∈ Xn(F, C), Xn ⊆ X0
c

}
and ic is defined by (3.16).

We first show that (mb,mw)
(
Ω̃
)
= 1. Indeed, since (mb,mw) is an eigenmeasure of L∗

F,ϕ, it follows
from [LSZ25, Proposition 6.15 (iv)] and induction on n that for each n ∈ N,

1 ⩾ (mb,mw)
(∪

X̃n(F, C)
)
= (mb,mw)

(∪
X̃0(F, C)

)
= (mb,mw)(S̃) = 1,

where we use the fact that
∪
X̃0(F, C) = S̃ since F is irreducible so that F (dom(F )) = S2. Note that

by Proposition 3.9 (iii),
{∪

X̃n(F, C)
}
n∈N is a decreasing sequence of sets. Thus,

(mb,mw)
(
Ω̃
)
= lim

n→+∞
(mb,mw)

(∪
X̃n(F, C)

)
= 1.

Since (mb,mw) ∈ P(S̃) is supported on Ω̃ and
∫
ṽũF,ϕ d(mb,mw) = 0, there exist points ỹ−, z̃+ ∈ Ω̃

such that ṽ(ỹ−) ⩽ 0 and ṽ(z̃+) ⩾ 0. By Definition 3.17, we have ỹ− = (y−, s) for some s ∈ {b,w}
and y− ∈ X0

s , and z̃+ = (z+, t) for some t ∈ {b,w} and z+ ∈ X0
t .

We fix an arbitrary point x̃ ∈ S̃. Then there exist c ∈ {b,w} and x ∈ X0
c satisfying x̃ = (x, c).

Since ỹ− = (y−, s) ∈ Ω̃, it follows from the definition of Ω̃ that there exists a sequence of tiles
{Xn}n∈N satisfying Xn ∈ Xn(F, C) and y− ∈ Xn+1 ⊆ Xn ⊆ X0

s for each n ∈ N. By [BM17,
Proposition 8.4 (ii)], there exists an integer nϵ ∈ N depending only on F , C, d, η, and δ1 such that
diamd(Y

nϵ) < ϵ for each nϵ-tile Y nϵ ∈ Xnϵ(f, C). Thus we have y− ∈ Xnϵ ⊆ Bd(y−, ϵ) ∩ X0
s . By

Proposition 3.9 (i), we haveX0 := Fnϵ(Xnϵ) ∈
{
X0

b , X
0
w

}
. Since F ∈ Sub(f, C) is primitive, by Defini-

tion 3.12, there exist nF ∈ N and Y nF ∈ XnF (F, C) satisfying Y nF ⊆ X0 and FnF (Y nF ) = X0
c . Then

it follows from [BM17, Lemma 5.17 (i)] and Proposition 3.9 (i) that Y nϵ+nF := (Fnϵ |Xnϵ )−1(Y nF ) ∈
Xnϵ+nF (F, C). Note that Y nϵ+nF ⊆ Xnϵ ⊆ X0

s and Fnϵ+nF (Y nϵ+nF ) = FnF (Y nF ) = X0
c . Thus

Y nϵ+nF ∈ Xnϵ+nF
cs (F, C). Set y := (Fnϵ+nF |Y nϵ+nF )

−1(x). Then we have y ∈ Y nϵ+nF ⊆ XnF ⊆
Bd(y−, ϵ) ∩X0

s . Thus

vs(y) ⩽ vs(y−) + η(ϵ) = ṽ(ỹ−) + η(ϵ) ⩽ η(ϵ) < δ1/2 ⩽ ∥ṽ∥
C(S̃)

− δ1/2.

Denote N := nϵ+nF , which depends only on F , C, d, η, and δ1. Write xXN :=
(
FN |XN

)−1
(x) for

each c̃ ∈ {b,w} and each XN ∈ XNc̃c (F, C). By Definition 5.5, (5.2), and Lemma 5.7, we have

L̃NF,ϕ(ṽ)(x̃) = L̃(N)
F,ϕ,c,b(vb)(x) + L̃(N)

F,ϕ,c,w(vw)(x)

= vs(y) exp
(
SFNϕ(y) + log us(y)− log uc(x)

)
+

∑
c̃∈{b,w}

∑
XN∈XN

c̃c
(F,C)\{Y N}

ṽc(xXN ) exp
(
SFNϕ(xXN ) + log uc̃(xXN )− log uc(x)

)
⩽
(
∥ṽ∥

C(S̃)
− δ1/2

)
exp
(
SFNϕ(y) + log us(y)− log uc(x)

)
+ ∥ṽ∥

C(S̃)

∑
c̃∈{b,w}

∑
XN∈XN

c̃c
(F,C)\{Y N}

exp
(
SFNϕ(xXN ) + log uc̃(xXN )− log uc(x)

)
⩽ ∥ṽ∥

C(S̃)

∑
c̃∈{b,w}

∑
XN∈XN

c̃c
(F,C)

exp
(
SFNϕ(xXN ) + log uc̃(xXN )− log uc(x)

)
− 2−1δ1 exp

(
SFNϕ(y) + log us(y)− log uc(x)

)
= ∥ṽ∥

C(S̃)
− 2−1δ1 exp

(
SFNϕ(y) + log us(y)− log uc(x)

)
.

Similarly, there exists z :=
(
FN |ZN

)−1
(x) for some ZN ∈ XNct (F, C) such that z ∈ ZN ⊆ Bd(z+, ϵ)∩X0

t

and
L̃NF,ϕ(ṽ)(x̃) ⩾ −∥ṽ∥

C(S̃)
+ 2−1δ1 exp

(
SFNϕ(z) + log ut(z)− log uc(x)

)
.
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Recall that ũF,ϕ = (ub, uw) ∈ C
(
X0

b

)
×C

(
X0

w

)
is a continuous function on S̃ given by Theorem 3.26.

Then by (3.27) in Theorem 3.26 we have

C̃−1 ⩽ ũF,ϕ(w̃) ⩽ C̃, for each w̃ ∈ S̃,

where C̃ ⩾ 1 is the constant defined in (3.13) in Lemma 3.15 and depends only on F , C, d, ϕ, and β.
Hence we get ∥∥L̃NF,ϕ(ṽ)∥∥C(S̃)

⩽ ∥ṽ∥
C(S̃)

− 2−1δ1C̃
−2 inf

w∈S2
exp
(
SFNϕ(w)

)
⩽ ∥ṽ∥

C(S̃)
− 2−1δ1C̃

−2 exp(−N∥ϕ∥∞).
(5.14)

Now we bound ∥ϕ∥∞ = ∥ϕ − P (F, ϕ)∥∞. By the definition of Hölder norm in Section 2 and the
hypothesis, ∥ϕ∥∞ ⩽ ∥ϕ∥C0,βS2 ⩽ K. Recall the definition of topological pressure as given in (3.1)
and the Variational Principle (3.4) in Subsection 3.1. Then by (3.29) in Theorem 3.27, (3.3), and
the fact that ∥ϕ∥∞ ⩽ K, we get

−K ⩽ P (F, ϕ) ⩽ P (f, ϕ) ⩽ htop(f) +K.

Then |P (F, ϕ)| ⩽ K + htop(f) = K + log(deg f) (see [BM17, Corollary 17.2]). Hence

∥ϕ∥∞ ⩽ ∥ϕ∥∞ + |P (F, ϕ)| ⩽ 2K + log(deg f).

By (3.13) in Lemma 3.15 and (3.9) in Lemma 3.4, quantitatively, we have

C̃ = (deg f)nF exp

(
2nF ∥ϕ∥∞ + C0

|ϕ|β
1− Λ−β

(
diamd(S

2)
)β)

,

where C0 > 1 is the constant depending only on f , C, and d from Lemma 3.3. Set

C̃ ′ := (deg f)nF exp

(
2nFK +

C0K

1− Λ−β (diamd(S
2))β

)
.

Then we have C̃ ⩽ C̃ ′ for each ϕ ∈ C0,β(S2, d) with ∥ϕ∥C0,βS2 ≤ K, and the constant C̃ ′ only
depends on F , C, d, K, and β.

Therefore, by (5.14), we get
∥∥L̃nF,ϕ(ṽ)∥∥C(S̃)

⩽ ∥ṽ∥
C(S̃)

− δ2, where

δ2 := 2−1δ1
(
C̃ ′)−2

exp(−2NK −N log(deg f)),

which depends only on F , C, d, η, β, K, and δ1. □

Remark 5.11. In Lemma 5.10, one cannot reduce the assumption “F ∈ Sub(f, C) is strongly prim-
itive” to “F ∈ Sub(f, C) is strongly irreducible”. To see this, let F be as in Example 3.8 (ii), which is
strongly irreducible but not strongly primitive. In this case, Ω = {p, q} for some points p ∈ inte

(
X0

b

)
and q ∈ inte

(
X0

w

)
that satisfy F (p) = q and F (q) = p. Set ϕ ≡ 0 on S2, vb ≡ 1 on X0

b , and vw ≡ −1

on X0
w. Then ũF,ϕ = 1

S̃
and (mb,mw) = (δp/2, δq/2) ∈ P(S̃) is an eigenmeasure of L∗

F,ϕ such that∫
ṽũF,ϕ d(mb,mw) = 0. However, L̃F,ϕ(ṽ) = −ṽ, which implies that

∥∥L̃nF,ϕ(ṽ)∥∥C(S̃)
= ∥ṽ∥

C(S̃)
for each

n ∈ N, contradicting the conclusion in Lemma 5.10.

We now establish a generalization of [LZ24, Theorem 5.17].

Theorem 5.12. Let f , C, F , d, Λ satisfy the Assumptions in Section 4. We assume in addition that
f(C) ⊆ C and F ∈ Sub(f, C) is strongly primitive. Let τ ∈ (0,+∞) be a constant and η : [0,+∞) →
[0,+∞) an abstract modulus of continuity. Let H be a bounded subset of C0,β(S2, d) for some β ∈
(0, 1]. Then for each ṽ ∈ Cτη

(
X0

b , d
)
× Cτη

(
X0

w, d
)
, each ϕ ∈ H, and each choice of (mb,mw) ∈ P(S̃)

from Theorem 3.25, we have

(5.15) lim
n→+∞

∥∥∥∥LnF,ϕ(ṽ)− ũF,ϕ

∫
ṽ d(mb,mw)

∥∥∥∥
C(S̃)

= 0.
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If, in addition,
∫
ṽũF,ϕ d(mb,mw) = 0, then

(5.16) lim
n→+∞

∥∥L̃nF,ϕ(ṽ)∥∥C(S̃)
= 0.

Moreover, the convergence in both (5.15) and (5.16) is uniform in ṽ ∈ Cτη
(
X0

b , d
)
×Cτη

(
X0

w, d
)
, ϕ ∈ H,

and the choice of (mb,mw).

Proof. We write C̃τη (S̃, d) := Cτη
(
X0

b , d
)
× Cτη

(
X0

w, d
)

in this proof.
Fix a constant K ∈ [0,+∞) such that ∥ϕ∥C0,βS2 ⩽ K for each ϕ ∈ H. Let MF,ϕ be the set of

possible choices of (mb,mw) ∈ P(S̃) from Theorem 3.25, i.e.,

(5.17) MF,ϕ :=
{
(νb, νw) ∈ P(S̃) : L∗

F,ϕ(νb, νw) = κ(νb, νw) for some c ∈ R
}
.

We recall that (µb, µw) ∈ P(S̃) defined in Theorem 3.26 by (µb, µw) = ũF,ϕ(mb,mw) depends on
the choice of (mb,mw).

Define for each n ∈ N0,

an := sup
{∥∥L̃nF,ϕ(ṽ)∥∥C(S̃)

: ϕ ∈ H, ṽ ∈ C̃τη (S̃, d),

∫
ṽũF,ϕ d(mb,mw) = 0, (mb,mw) ∈ MF,ϕ

}
.

By Lemma 5.7,
∥∥L̃F,ϕ∥∥C(S̃)

= 1, so
∥∥L̃nF,ϕ(ṽ)∥∥C(S̃)

is non-increasing in n for fixed ϕ ∈ H and ṽ ∈
C̃τη (S̃, d). Note that a0 ⩽ τ < +∞. Thus {an}n∈N0 is a non-increasing sequence of non-negative real
numbers.

Suppose now that limn→+∞ an = a > 0. By Proposition 5.9, there exists an abstract modulus of
continuity η̃ such that{

L̃nF,ϕ(ṽ) : n ∈ N0, ϕ ∈ H, ṽ ∈ C̃τη (S̃, d)
}
⊆ Cτη̃

(
X0

b , d
)
× Cτη̃

(
X0

w, d
)
.

Note that for each ϕ ∈ H, each n ∈ N0, and each ṽ ∈ C̃τη (S̃, d) with
∫
ṽũF,ϕ d(mb,mw) = 0, it follows

from (5.10) that∫
L̃nF,ϕ(ṽ)ũF,ϕ d(mb,mw) =

∫
L̃nF,ϕ(ṽ) d(µb, µw) =

∫
ṽ d(µb, µw) = 0.

Then by applying Lemma 5.10 with η̃, β, K, and δ1 = a/2, we find constants n0 ∈ N and δ2 > 0
such that ∥∥L̃n0

F,ϕ

(
L̃nF,ϕ(ṽ)

)∥∥
C(S̃)

⩽
∥∥L̃nF,ϕ(ṽ)∥∥C(S̃)

− δ2,

for each n ∈ N0, each ϕ ∈ H, each (mb,mw) ∈ MF,ϕ, and each ṽ ∈ C̃τη (S̃, d) with
∫
ṽũF,ϕ d(mb,mw) =

0 and
∥∥L̃nF,ϕ(ṽ)∥∥C(S̃)

⩾ a/2. Since limn→+∞ an = a, we can fix integer m > 1 sufficiently large such
that am ⩽ a + δ2/2. Then for each ϕ ∈ H, each (mb,mw) ∈ MF,ϕ, and each ṽ ∈ C̃τη (S̃, d) with∫
ṽũF,ϕ d(mb,mw) = 0 and

∥∥L̃mF,ϕ(ṽ)∥∥C(S̃)
⩾ a/2. we have∥∥L̃n0+m

F,ϕ (ṽ)
∥∥
C(S̃)

⩽
∥∥L̃mF,ϕ(ṽ)∥∥C(S̃)

− δ2 ⩽ am − δ2 ⩽ a− δ2/2.

On the other hand, since
∥∥L̃nF,ϕ(ṽ)∥∥C(S̃)

is non-increasing in n, we have that for each ϕ ∈ H, each
(mb,mw) ∈ MF,ϕ, and each ṽ ∈ C̃τη (S̃, d) with

∫
ṽũF,ϕ d(mb,mw) = 0 and

∥∥L̃mF,ϕ(ṽ)∥∥C(Ω̃)
< a/2, the

following holds: ∥∥L̃n0+m
F,ϕ (ṽ)

∥∥
C(S̃)

⩽
∥∥L̃mF,ϕ(ṽ)∥∥C(S̃)

< a/2.

Thus an0+m ⩽ max
{
a − δ2/2, a/2

}
< a, contradicting the fact that {an}n∈N0 is a non-increasing

sequence and the assumption that limn→+∞ an = a. This proves the uniform convergence in (5.16).
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Next, we prove the uniform convergence in (5.15). By Lemma 5.7 and (5.8) in Lemma 5.6, for
each ṽ ∈ C̃τη (S̃, d), each ϕ ∈ H, and each (mb,mw) ∈ MF,ϕ, we have∥∥∥∥LnF,ϕ(ṽ)− ũF,ϕ

∫
ṽ d(mb,mw)

∥∥∥∥
C(S̃)

⩽ ∥ũF,ϕ∥C(S̃)

∥∥∥∥ 1

ũF,ϕ
Ln
F,ϕ

(ṽ)−
∫
ṽ d(mb,mw)

∥∥∥∥
C(S̃)

= ∥ũF,ϕ∥C(S̃)

∥∥∥∥L̃nF,ϕ( ṽ

ũF,ϕ

)
−
∫

ṽ

ũF,ϕ
d(µb, µw)

∥∥∥∥
C(S̃)

= ∥ũF,ϕ∥C(S̃)

∥∥∥∥L̃nF,ϕ( ṽ

ũF,ϕ
− 1

S̃

∫
ṽ

ũF,ϕ
d(µb, µw)

)∥∥∥∥
C(S̃)

.

(5.18)

By (3.26) in Theorem 3.26, we have

(5.19) C̃−1 ⩽ ∥ũF,ϕ∥C(S̃)
⩽ C̃,

where C̃ ⩾ 1 is the constant defined in (3.13) in Lemma 3.15 and depends only on F , C, d, ϕ, and β.
By (3.13) and (3.9), quantitatively,

C̃ = (deg f)nF exp

(
2nF ∥ϕ∥∞ + C0

|ϕ|β
1− Λ−β

(
diamd(S

2)
)β)

,

where C0 > 1 is the constant depending only on f , C, and d from Lemma 3.3 and nF ∈ N is the
constant depending only on F and C from Definition 3.12 since F is primitive. Set

C̃ ′ := (deg f)nF exp

(
2nFK +

C0K

1− Λ−β (diamd(S
2))β

)
.

Then we have C̃ ⩽ C̃ ′ for each ϕ ∈ C0,β(S2, d) with ∥ϕ∥C0,βS2 ≤ K, and the constant C̃ ′ only
depends on F , C, d, K, and β. Denote

w̃ :=
ṽ

ũF,ϕ
− 1

S̃

∫
ṽ

ũF,ϕ
d(µb, µw) ∈ C(S̃).

Then ∥w̃∥
C(S̃)

⩽ 2∥ṽ/ũF,ϕ∥C(S̃)
⩽ 2τC̃ ′. Due to the first inequality in (3.27) and the fact that

ũF,ϕ ∈ C0,β
(
X0

b , d
)
× C0,β

(
X0

w, d
)

by Theorem 3.26, we can apply Lemma 5.8 and conclude that
there exists an abstract modulus of continuity η̂ associated with ṽ/ũF,ϕ such that η̂ is independent
of the choices of ṽ ∈ C̃τη (S̃, d), ϕ ∈ H, and (mb,mw) ∈ MF,ϕ. Thus w̃ ∈ C τ̂η̂ (X, d), where τ̂ := 2τC̃ ′.
Note that

∫
w̃ũF,ϕ d(mb,mw) =

∫
w̃ d(µb, µw) = 0. Finally, we can apply the uniform convergence in

(5.16) with ṽ = w̃ to conclude the uniform convergence in (5.15) by (5.18) and (5.19). □

The following proposition is an immediate consequence of Theorem 5.12.

Proposition 5.13. Let f , C, F , d, ϕ satisfy the Assumptions in Section 4. We assume in addition
that f(C) ⊆ C and F ∈ Sub(f, C) is strongly primitive. Let (µb, µw) ∈ P(S̃) be a Borel probability
measure defined in Theorem 3.26. Then for each Borel probability measure (νb, νw) ∈ P(S̃), we have(

L̃∗
F,ϕ

)n
(νb, νw)

w∗
−→ (µb, µw) as n→ +∞.

Proof. Recall that for each ṽ ∈ C(S̃), there exists some abstract modulus of continuity η such that
ṽ ∈ Cτη (S

2, d), where τ := ∥ṽ∥
C(S̃)

. Recall from Theorem 3.26 that (µb, µw) = ũF,ϕ(mb,mw). Then
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by Lemma 5.7 and (5.16) in Theorem 5.12, for each ṽ ∈ C(S̃) we have that

lim
n→+∞

⟨(
L̃∗
F,ϕ

)n
(νb, νw), ṽ

⟩
= lim

n→+∞

(⟨
(νb, νw), L̃nF,ϕ

(
ṽ − ⟨(µb, µw), ṽ⟩1S̃

)⟩
+
⟨
(νb, νw), L̃nF,ϕ

(
⟨(µb, µw), ṽ⟩1S̃

)⟩)
= 0 +

⟨
(νb, νw), ⟨(µb, µw), ṽ⟩1S̃

⟩
= ⟨(µb, µw), ṽ⟩.

This completes the proof. □

5.3. Uniqueness. In this subsection, we finish the proof of Theorem 5.1.
Theorem 5.12 implies, in particular, the uniqueness of (mb,mw) ∈ P(S̃) given by Theorem 3.25.

Proposition 5.14. Let f , C, F , d, ϕ satisfy the Assumptions in Section 4. We assume in addition
that f(C) ⊆ C and F ∈ Sub(f, C) is strongly primitive. Then the measure mF,ϕ = (mb,mw) ∈ P(S̃)

from Theorem 3.25 is unique, i.e., (mb,mw) is the unique Borel probability measure on S̃ that
satisfies L∗

F,ϕ(mb,mw) = κ(mb,mw) for some constant κ ∈ R. Moreover, the measure µF,ϕ =

(µb, µw) := ũF,ϕ(mb,mw) from Theorem 3.26 is the unique Borel probability measure on S̃ that
satisfies L̃∗

F,ϕ(µb, µw) = (µb, µw).

Note that by Theorem 3.27, µF,ϕ is an equilibrium state for FΩ and ϕ|Ω.

Proof. Let (mb,mw), (m
′
b,m

′
w) ∈ P(S̃) be two measures, both of which arise from Theorem 3.25.

Note that for each ṽ = (vb, vw) ∈ C(S̃), there exists some abstract modulus of continuity η such
that ṽ = (vb, vw) ∈ Cτη

(
X0

b , d
)
× Cτη

(
X0

w, d
)
, where τ := ∥ṽ∥

C(S̃)
. Then by (5.15) in Theorem 5.12

and (3.27) in Theorem 3.26, we see that
∫
ṽ d(mb,mw) =

∫
ṽ d(m′

b,m
′
w) for each ṽ ∈ C(S̃). Thus

(mb,mw) = (m′
b,m

′
w).

Recall from (5.10) that L̃∗
F,ϕ(µb, µw) = (µb, µw). Suppose (νb, νw) ∈ P(S̃) is another measure

with L̃∗
F,ϕ(νb, νw) = (νb, νw). It suffices to show that (νb, νw) = (µb, µw). Note that by (3.27) in

Theorem 3.26, there exists a constant C > 0 such that ũF,ϕ(x̃) ⩾ C for each x̃. Then by (5.7) in
Definition 5.5, for each ṽ ∈ C(S̃), we have⟨

L̃∗
F,ϕ(νb, νw), ṽ

⟩
=
⟨
(νb, νw), L̃F,ϕ(ṽ)

⟩
=
⟨
(νb, νw),

1

ũF,ϕ
LF,ϕ(ũF,ϕṽ)

⟩
=

⟨
(νb, νw)

ũF,ϕ
,LF,ϕ(ũF,ϕṽ)

⟩
=

⟨
ũF,ϕL∗

F,ϕ

(
(νb, νw)

ũF,ϕ

)
, ṽ

⟩
.

This implies ũF,ϕL∗
F,ϕ

(
(νb,νw)
ũF,ϕ

)
= L̃∗

F,ϕ(νb, νw) = (νb, νw), i.e., L∗
F,ϕ

(
(νb,νw)
ũF,ϕ

)
= (νb,νw)

ũF,ϕ
. Denote λ :=⟨

(νb,νw)
ũF,ϕ

,1
S̃

⟩
> 0. Then by (3.15) we have L∗

F,ϕ

(
(νb,νw)
λũF,ϕ

)
= eP (F,ϕ) (νb,νw)

λũF,ϕ
. Noting that (νb,νw)

λũF,ϕ
is also

a Borel probability measure on S̃, by the uniqueness of (mb,mw) we have (νb,νw)
λũF,ϕ

= (mb,mw). Hence
(νb, νw) = λũF,ϕ(mb,mw) = λ(µb, µw). Since (νb, νw), (µb, µw) ∈ P(S̃), we get λ = 1 and (νb, νw) =

(µb, µw). Thus (µb, µw) is the unique Borel probability measure on S̃ that satisfies L̃∗
F,ϕ(µb, µw) =

(µb, µw). □

We follow the conventions discussed in Remarks 3.18 and 3.19.

Lemma 5.15. Let f , C, F , d satisfy the Assumptions in Section 4. We assume in addition that
f(C) ⊆ C and F ∈ Sub(f, C) is strongly primitive. Let τ ⩾ 0 be a constant and η an abstract modulus
of continuity. Let H be a bounded subset of C0,β(S2, d) for some β ∈ (0, 1]. Fix arbitrary sequence
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{xn}n∈N of points in S2 and sequence {cn}n∈N of colors in {b,w} that satisfies xn ∈ X0
cn for each

n ∈ N. Then for each v ∈ Cτη (S
2, d) and each ϕ ∈ H, we have

(5.20) lim
n→+∞

1
n

∑
Xn∈Xn

cn (F,C)

(
SFn v(xXn)

)
exp
(
SFn ϕ(xXn)

)
∑

Xn∈Xn
cn (F,C)

exp
(
SFn ϕ(xXn)

) =

∫
S2

v dµF,ϕ,

where we denote xXn := (Fn|Xn)−1(xn) for each Xn ∈ Xncn(F, C), and µF,ϕ ∈ P(S2) is defined in
Theorem 3.26. Moreover, the convergence is uniform in v ∈ Cτη (S

2, d) and ϕ ∈ H.

Proof. By Lemma 3.22 and Definition 3.20, for each n ∈ N, each v ∈ Cτη (S
2, d), and each ϕ ∈ H,

1
n

∑
Xn∈Xn

cn (F,C)

(
SFn v(xXn)

)
exp
(
SFn ϕ(xXn)

)
∑

Xn∈Xn
cn (F,C)

exp
(
SFn ϕ(xXn)

) =

1
n

n−1∑
j=0

∑
Xn∈Xn

cn (F,C)
v(f j(xXn)) exp

(
SFn ϕ(xXn)

)
(
LnF,ϕ

(
1
S̃

))
(xn, cn)

=

1
n

n−1∑
j=0

(
LnF,ϕ(ṽ ◦ f j)

)
(xn, cn)(

LnF,ϕ
(
1
S̃

))
(xn, cn)

,

where, by abuse of notation, for each u ∈ C(S2) we denote by ũ the continuous function on S̃ given
by ũ(z̃) := u(z) for each z̃ = (z, c) ∈ S̃. Note that by Lemma 3.22 and Definition 3.20, for each
j ∈ N0,

LjF,ϕ(ṽ ◦ f j) = ṽ LjF,ϕ
(
1
S̃

)
.

Hence,

1
n

n−1∑
j=0

(
LnF,ϕ(ṽ ◦ f j)

)
(xn, cn)(

LnF,ϕ
(
1
S̃

))
(xn, cn)

=

1
n

n−1∑
j=0

(
Ln−jF,ϕ

(
ṽ LjF,ϕ

(
1
S̃

)))
(xn, cn)(

LnF,ϕ
(
1
S̃

))
(xn, cn)

=

1
n

n−1∑
j=0

(
Ln−j
F,ϕ

(
ṽ Lj

F,ϕ

(
1
S̃

)))
(xn, cn)(

Ln
F,ϕ

(
1
S̃

))
(xn, cn)

.

By Proposition 5.9,
{
Ln
F,ϕ

(
1
S̃

)
: n ∈ N0

}
⊆ C τ̂η̂

(
X0

b , d
)
× C τ̂η̂

(
X0

w, d
)
, for some constant τ̂ ⩾ 0 and

some abstract modulus of continuity η̂, which are independent of the choice of ϕ ∈ H. Thus by
Lemma 5.8,
(5.21)

{
ṽ Ln

F,ϕ

(
1
S̃

)
: n ∈ N0, v ∈ Cτη (S

2, d)
}
⊆ Cτ1η1

(
X0

b , d
)
× Cτ1η1

(
X0

w, d
)
,

for some constant τ1 ⩾ 0 and some abstract modulus of continuity η1, which are independent of the
choice of ϕ ∈ H.

By Theorem 5.12 and Proposition 5.14, we have

(5.22)
∥∥Lk

F,ϕ

(
1
S̃

)
−ũF,ϕ

∥∥
C(S̃)

−→ 0,

as k → +∞, uniformly in ϕ ∈ H. Moreover, by (5.21), the independence of τ1 and η1 on ϕ ∈ H in
(5.21), Theorem 5.12, and Proposition 5.14, we have

(5.23)
∥∥∥∥LkF,ϕ(ṽ LjF,ϕ(1S̃))−ũF,ϕ ∫ ṽ LjF,ϕ(1S̃) d(mb,mw)

∥∥∥∥
C(S̃)

−→ 0,

as k → +∞, uniformly in j ∈ N0, ϕ ∈ H, and v ∈ Cτη (S
2, d).
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Fix a constant K ⩾ 0 such that for each ϕ ∈ H, ∥ϕ∥C0,βS2 ⩽ K. By (3.26) in Theorem 3.26, we
have
(5.24) C̃−1 ⩽ ∥ũF,ϕ∥C(S̃)

⩽ C̃,

where C̃ ⩾ 1 is the constant defined in (3.13) in Lemma 3.15 and depends only on F , C, d, ϕ, and β.
By (3.13) and (3.9), quantitatively,

C̃ = (deg f)nF exp

(
2nF ∥ϕ∥∞ + C0

|ϕ|β
1− Λ−β

(
diamd(S

2)
)β)

,

where C0 > 1 is the constant depending only on f , C, and d from Lemma 3.3 and nF ∈ N is the
constant depending only on F and C from Definition 3.12 since F is primitive. Define

C̃ ′ := (deg f)nF exp

(
2nFK +

C0K

1− Λ−β (diamd(S
2))β

)
.

Then we have C̃ ⩽ C̃ ′ for each ϕ ∈ C0,β(S2, d) with ∥ϕ∥C0,βS2 ≤ K, and the constant C̃ ′ only
depends on F , C, d, K, and β.

Thus by (5.21), we get that for j ∈ N0, v ∈ Cτη (S
2, d), and ϕ ∈ H,

(5.25)
∥∥∥∥ũF,ϕ ∫ ṽ LjF,ϕ(1S̃) d(mb,mw)

∥∥∥∥
C(S̃)

⩽ ∥ũF,ϕ∥C(S̃)

∥∥∥ṽ Lj
F,ϕ

(
1
S̃

)∥∥∥
C(S̃)

⩽ τ1C̃
′.

By (5.12) in Proposition 5.9 and (5.21), we get some constant τ2 > 0 such that for each j, k ∈ N0,
each v ∈ Cτη (S

2, d), and each ϕ ∈ H,

(5.26)
∥∥∥Lk

F,ϕ

(
ṽ Lj

F,ϕ

(
1
S̃

))∥∥∥
C(S̃)

< τ2.

Hence, we can conclude from (5.25), (5.26), and (5.23) that

lim
n→+∞

1

n

∥∥∥∥n−1∑
j=0

Ln−j
F,ϕ

(
ṽ Lj

F,ϕ

(
1
S̃

))
−
n−1∑
j=0

ũF,ϕ

∫
ṽ Lj

F,ϕ

(
1
S̃

)
d(mb,mw)

∥∥∥∥
C(S̃)

= 0,

uniformly in v ∈ Cτη (S
2, d) and ϕ ∈ H. Thus by (5.22) and (5.24), we have

lim
n→+∞

∥∥∥∥∥∥
1
n

n−1∑
j=0

Ln−j
F,ϕ

(
ṽ Lj

F,ϕ

(
1
S̃

))
Ln
F,ϕ

(
1
S̃

) −

1
n

n−1∑
j=0

ũF,ϕ

∫
ṽ Lj

F,ϕ

(
1
S̃

)
d(mb,mw)

ũF,ϕ

∥∥∥∥∥∥
C(S̃)

= 0,

uniformly in v ∈ Cτη (S
2, d) and ϕ ∈ H. Combining the above with (5.21), (5.22), (5.24), and the

calculation at the beginning of the proof, we can conclude, therefore, that the left-hand side of (5.20)
is equal to

lim
n→+∞

1

n

n−1∑
j=0

∫
ṽ Lj

F,ϕ

(
1
S̃

)
d(mb,mw) = lim

n→+∞

1

n

n−1∑
j=0

∫
ṽ ũF,ϕ d(mb,mw)

=

∫
ṽ d(µb, µw) =

∫
v dµF,ϕ,

where µF,ϕ ∈ P(S2) is defined in Theorem 3.26, and the convergence is uniform in v ∈ Cτη (S
2, d) and

ϕ ∈ H. □
Theorem 5.16. Let f , C, F , d, ϕ satisfy the Assumptions in Section 4. We assume in addition
that f(C) ⊆ C and F ∈ Sub(f, C) is strongly primitive. Let ϕ, γ ∈ C0,β(S2, d) be real-valued Hölder
continuous function with an exponent β ∈ (0, 1]. Then for each t ∈ R, we have

d

dt
P (F, ϕ+ tγ) =

∫
γ dµF,ϕ+tγ ,
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where µF,ϕ+tγ ∈ P(S2) is defined in Theorem 3.26.

Proof. We will use the well-known fact from real analysis that if a sequence {gn}n∈N of real-valued
differentiable functions defined on a finite interval in R converges pointwise to some function g and
the sequence of the corresponding derivatives

{dgn
dt

}
n∈N converges uniformly to some function h, then

g is differentiable and dg
dt = h.

By (3.28) in Theorem 3.26 and (3.21) in Lemma 3.22, for each c ∈ {b,w}, each x ∈ X0
c , and each

ψ ∈ C0,β(S2, d), we have

P (F, ψ) = lim
n→+∞

1

n
log
(
LnF,ψ

(
1
S̃

)
(x, c)

)
= lim

n→+∞

1

n
log

∑
Xn∈Xn

c (F,C)

exp
(
SFn ψ(xXn)

)
,(5.27)

where xXn := (Fn|Xn)−1(x) for each Xn ∈ Xnc (F, C).
Fix arbitrary c ∈ {b,w}, x ∈ X0

c , and ℓ ∈ (0,+∞). For each n ∈ N and each t ∈ R, define

Pn(t) :=
1

n
log

∑
Xn∈Xn

c (F,C)

exp
(
SFn (ϕ+ tγ)(xXn)

)
,

where xXn := (Fn|Xn)−1(x) for each Xn ∈ Xnc (F, C). Note that there exists a bounded subset H of
C0,β(S2, d) such that ϕ+ tγ ∈ H for each t ∈ (−ℓ, ℓ). Then by Lemma 5.15,

dPn
dt

(t) =

1
n

∑
Xn∈Xn

c (F,C)

(
SFn γ(xXn)

)
exp
(
SFn (ϕ+ tγ)(xXn)

)
∑

Xn∈Xn
c (F,C)

exp
(
SFn (ϕ+ tγ)(xXn)

)
converges to

∫
γ dµF,ϕ+tγ as n→ +∞, uniformly in t ∈ (−ℓ, ℓ).

On the other hand, by (5.27), for each t ∈ (−ℓ, ℓ), we have
lim

n→+∞
Pn(t) = P (F, ϕ+ tγ).

Hence P (F, ϕ+ tγ) is differentiable with respect to t on (−ℓ, ℓ), and
d

dt
P (F, ϕ+ tγ) = lim

n→+∞

dPn
dt

(t) =

∫
γ dµF,ϕ+tγ .

Since ℓ ∈ (0,+∞) is arbitrary, this completes the proof. □
The following lemma follows immediately from the fact that, in a compact metric space, the set

of Lipschitz functions is dense in the space of continuous functions with respect to the uniform norm
(see for example, [Hei01, Theorem 6.8]).

Lemma 5.17. Let (X, d) be a compact metric space. Then for each β ∈ (0, 1], C0,β(X, d) is a dense
subset of C(X) with respect to the uniform norm.

Now we prove the uniqueness of the equilibrium states for subsystems.
Proof of Theorem 5.1. The existence part follows from Theorem 3.27.

We now prove the uniqueness.
Denote Ω := Ω(F, C) and FΩ := F |Ω. Recall that for each φ ∈ C(S2), P (FΩ, φ|Ω) is the topological

pressure of FΩ : Ω → Ω with respect to the potential φ|Ω.
Since ϕ ∈ C0,β(S2, d) for some β ∈ (0, 1], it follows from (3.29) in Theorem 3.27 and Theorem 5.16

that the function
t 7→ P (FΩ, (ϕ+ tγ)|Ω)

is differentiable at 0 for each γ ∈ C0,β(S2, d). Write
W :=

{
ψ|Ω ∈ C0,β(Ω, d) : ψ ∈ C0,β(S2, d)

}
.

By Lemma 5.17, W is a dense subset of C(Ω) with respect to the uniform norm. In particular,
W is a dense subset of C(Ω) in the weak topology. We note that the topological pressure function
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P (FΩ, ·) : C(Ω) → R is convex and continuous (see for example, [Wal82, Theorem 9.7]). Thus by
Theorem 5.3 with V = C(Ω), x = ϕ, U =W , and Q = P (FΩ, ·), we get card

(
C(Ω)∗ϕ,P (FΩ,·)

)
= 1.

On the other hand, if µ ∈ M(Ω, FΩ) is an equilibrium state for FΩ and ϕ|Ω, then by (3.3) and
(3.4),

hµ(FΩ) +

∫
ϕ dµ = P (FΩ, ϕ|Ω),

and for each γ ∈ C(Ω),
hµ(FΩ) +

∫
(ϕ+ γ) dµ ⩽ P (FΩ, (ϕ+ γ)|Ω).

Thus
∫
γ dµ ⩽ P (FΩ, (ϕ + γ)|Ω) − P (FΩ, ϕ|Ω). Then by (5.1), the continuous functional γ 7→

∫
γ dµ

on C(Ω) is in C(Ω)∗ϕ,P (FΩ,·). Since µF,ϕ defined in Theorem 3.26 is an equilibrium state for FΩ and
ϕ|Ω, and card

(
C(Ω)∗ϕ,P (FΩ,·)

)
= 1, we get that each equilibrium state µ for FΩ and ϕ|Ω must satisfy∫

γ dµ =
∫
γ dµF,ϕ for γ ∈ C(Ω), i.e., µ = µF,ϕ.

Finally, it follows from Theorem 3.27 that the map FΩ is forward quasi-invariant with respect to
µF,ϕ. □
Remark. Let f , C, F , d, ϕ satisfy the Assumptions in Section 4. We assume in addition that f(C) ⊆ C
and F ∈ Sub(f, C) is strongly primitive. Since the entropy map µ 7→ hµ(FΩ) for FΩ : Ω → Ω
is affine (see for example, [Wal82, Theorem 8.1]), i.e., if µ, ν ∈ M(Ω, FΩ) and p ∈ [0, 1], then
hpµ+(1−p)ν(FΩ) = phµ(FΩ) + (1− p)hν(FΩ), so is the pressure map µ 7→ Pµ(FΩ, ϕ|Ω) for FΩ and ϕ|Ω.
Thus, the uniqueness of the equilibrium state µF,ϕ and the Variational Principle (3.4) imply that
µF,ϕ is an extreme point of the convex set M(Ω, FΩ). This implies that µF,ϕ is ergodic since extreme
points of M(Ω, FΩ) are ergodic (see for example, [KH95, Lemma 4.1.10]). However, we are going to
prove a much stronger ergodic property of µF,ϕ in Section 6.

Theorem 5.1 implies, in particular, that there exists a unique equilibrium state µϕ for each ex-
panding Thurston map f : S2 → S2 together with a real-valued Hölder continuous potential ϕ.

Corollary 5.18. Let f , d, ϕ satisfy the Assumptions in Section 4. Then there exists a unique
equilibrium state µϕ for the map f and the potential ϕ.

Proof. By Lemma 3.5 we can find a sufficiently high iterate F := fn of f for some n ∈ N that has an
F -invariant Jordan curve C ⊆ S2 with postF = post f ⊆ C. Then F is also an expanding Thurston
map. In particular, by [Li18, Lemma 5.10] and Definition 3.12, F is a strongly primitive subsystem
of F with respect to C and Ω(F, C) = S2.

Denote Φ := Sfnϕ. By Theorem 5.1 there exists a unique equilibrium state µF,Φ ∈ M(S2, F ) for
the map F and the potential Φ. Note that µF,Φ is F -invariant. Set

µ :=
1

n

n−1∑
i=0

f i∗µF,Φ ∈ M(S2, f).

Then we get nhµ(f) = hµF,Φ(F ) (see for example, [LS24, Lemma 5.2]) and∫
ϕ dµ =

1

n

∫ n−1∑
i=0

ϕ df i∗µF,Φ =
1

n

∫ n−1∑
i=0

ϕ ◦ f i dµF,Φ =
1

n

∫
ΦdµF,Φ.

Noting that P (F,Φ) = nP (f, ϕ) (recall (3.1)), we obtain

hµ(f) +

∫
ϕ dµ =

1

n

(
hµF,Φ(F ) +

∫
ΦdµF,Φ

)
=

1

n
P (F,Φ) = P (f, ϕ).

Thus µ is an equilibrium state for the map f and the potential ϕ.
Now we prove the uniqueness. Suppose ν is an equilibrium state for the map f and the potential

ϕ. By similar arguments as above, one sees that ν is an equilibrium state for the map F and the
potential Φ. Then it follows from the uniqueness part of Theorem 5.1 that ν = µF,Φ. □
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6. Ergodic Properties

In this section, we show in Theorem 6.3 that if f , C, F , d, and ϕ satisfied the Assumptions in Sec-
tion 4, f(C) ⊆ C, and F ∈ Sub(f, C) is strongly primitive, then the measure-preserving transformation
F |Ω of the probability space (Ω, µF,ϕ) is exact (see Definition 6.1), and as an immediate consequence,
mixing (see Corollary 6.6). Another consequence of Theorem 6.3 is that µF,ϕ is non-atomic (see
Corollary 6.4).

For each Borel measure µ on a compact metric space (X, d), we denote by µ the completion of µ,
i.e., µ is the unique measure defined on the smallest σ-algebra B containing all Borel sets and all
subsets of µ-null sets, satisfying µ(E) = µ(E) for each Borel set E ⊆ X.

Definition 6.1. Let T : X → X be a measure-preserving transformation of a probability space
(X,µ). Then T is called exact if for every measurable set E with µ(E) > 0 and measurable images
T (E), T 2(E), . . . , the following holds:

lim
n→+∞

µ(Tn(E)) = 1.

Remark 6.2. Note that in Definition 6.1, we do not require µ to be a Borel measure. In the case
when F ∈ Sub(f, C) is a subsystem of some expanding Thurston map f with respect to some Jordan
curve C ⊆ S2 containing post f and µ is a Borel measure on Ω := Ω(F, C), the set (F |Ω)n(E) is a
Borel set for each n ∈ N and each Borel subset E ⊆ Ω. Indeed, a Borel set E ⊆ Ω can be covered
by n-tiles in the cell decompositions of S2 induced by f and C. For each n-tile X ∈ Xn(f, C), the
restriction fn|X of fn to X is a homeomorphism from the closed set X onto fn(X) by [BM17,
Proposition 5.16 (i)]. Thus the set fn(E) is Borel. Recall from Subsection 3.3 that F |Ω = f |Ω and
F (Ω) ⊆ Ω. It is then clear that the set (F |Ω)n(E) is also Borel.

We now prove that the measure-preserving transformation FΩ := F |Ω of the probability space
(Ω, µF,ϕ) is exact. We follow the conventions discussed in Remarks 3.18 and 3.19.

Theorem 6.3. Let f , C, F , d, ϕ satisfy the Assumptions in Section 4. We assume in addition
that f(C) ⊆ C and F ∈ Sub(f, C) is strongly primitive. Denote FΩ := F |FΩ

. Let µF,ϕ be the
unique equilibrium state for FΩ and ϕ|Ω, and µF,ϕ its completion. Then the measure-preserving
transformation FΩ of the probability space (Ω, µF,ϕ) (resp. (Ω, µF,ϕ)) is exact.

Proof. Recall from Theorems 3.27 and 3.26 that µF,ϕ = (µb, µw) = ũF,ϕ(mb,mw), where mF,ϕ =
(mb,mw) is an eigenmeasure of L∗

F,ϕ from Theorem 3.25 and ũF,ϕ is an eigenfunction of LF,ϕ from
Theorem 3.26. Then by (3.27) in Theorem 3.26, it suffices to prove that

lim
n→+∞

mF,ϕ(Ω \ FnΩ(A)) = 0

for each Borel set A ⊆ Ω with mF,ϕ(A) > 0. We follow the conventions discussed in Remark 5.2 so
that mF,ϕ ∈ P(Ω) ⊆ P(S2).

Let A ⊆ Ω be an arbitrary Borel subset of Ω with mF,ϕ(A) > 0. Fix an arbitrary ε > 0. By the
regularity of mF,ϕ there exists a compact set K ⊆ A and an open set U ⊆ S2 with K ⊆ A ⊆ U and
mF,ϕ(U \ K) < ε. Since the diameters of tiles approach 0 uniformly as their levels become larger,
there exists N ∈ N such that for each integer n ⩾ N , every n-tile that meets K is contained in the
open neighborhood U of K. For each n ∈ N, we define

Tn := {Xn ∈ Xn(F, C) : Xn ∩K ̸= ∅} and Tn :=
∪

Tn.

Then for each integer n ⩾ N , we have K ⊆ Tn ⊆ U and mF,ϕ(T
n \A) ⩽ mF,ϕ(U \K) < ε. Thus, it

follows from Theorem 3.25 (i) that
∑

Xn∈Tn mF,ϕ(X
n \K) < ε. This implies

(6.1)
∑

Xn∈Tn mF,ϕ(X
n \K)∑

Xn∈Tn mF,ϕ(Xn)
<

ε

mF,ϕ(K)
.
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Hence for each integer n ⩾ N , there exists an n-tile Y n ∈ Tn such that
mF,ϕ(Y

n \K)

mF,ϕ(Y n)
<

ε

mF,ϕ(K)
.

By Proposition 3.9 (i), the map Fn is injective on Y n. Then it follows from Theorem 3.25 (ii),
Lemma 3.4, and (6.1) that

mF,ϕ(F
n(Y n) \ Fn(K))

mF,ϕ(Fn(Y n))
⩽ mF,ϕ(F

n(Y n \K))

mF,ϕ(Fn(Y n))
=

∫
Y n\K exp(−Snϕ) dmF,ϕ∫
Y n exp(−Snϕ) dmF,ϕ

⩽ C
mF,ϕ(Y

n \K)

mF,ϕ(Y n)
⩽ Cε

mF,ϕ(K)
,

where C := exp
(
C1(diamd(S

2))β
)

and C1 ⩾ 0 is the constant defined in (3.9) in Lemma 3.4 which
depends only on f , C, d, ϕ, and β. Let nF ∈ N be the constant from Definition 3.12, which depends
only on f and C. Note that it follows from Proposition 3.9 (i) that Fn(Y n) = X0

c for some c ∈ {b,w}.
Since F is strongly primitive, by Lemma 3.14, there exist XnF

b ∈ XnF
bc (F, C) and XnF

w ∈ XnF
wc (F, C)

such that XnF
b ∪XnF

w ⊆ X0
c = Fn(Y n). We claim that

(6.2) Ω = Fn+nF (Y n ∩ Ω).

Indeed, since F (Ω) ⊆ Ω (recall Proposition 3.9 (ii)), it suffices to show that Ω ⊆ Fn+nF (Y n ∩ Ω).
For each x ∈ Ω, by (3.11), there exists a sequence of tiles

{
Xk
}
k∈N such that {x} =

∩
k∈NX

k

and Xk ∈ Xk(F, C) for each k ∈ N. By Proposition 3.6, we may assume without loss of gen-
erality that Xk ⊆ X0

b for each k ∈ N. Since F is strongly primitive, by Lemma 3.14, there exists
Xn+nF

b ∈ Xn+nF
b (F, C) such thatXn+nF

b ⊆ Y n and Fn+nF
(
Xn+nF

b

)
= X0

b . Then it follows from Propo-
sition 3.9 (i) and [BM17, Lemma 5.17 (i)] that Y k+n+nF :=

(
Fn+nF |

X
n+nF
b

)−1(
Xk
)
∈ Xk+n+nF (F, C)

for each k ∈ N. Set y :=
(
Fn+nF |

X
n+nF
b

)−1
(x). Note that y ∈ Y k+n+nF ⊆ Y n for each k ∈ N. Thus

by (3.11) and Proposition 3.9 (iii), we conclude that y ∈ Y n ∩ Ω and (6.2) holds.
By (6.2), we get

Ω \ Fn+nF
Ω (K) = Fn+nF (Y n ∩ Ω) \ Fn+nF (K) ⊆ FnF (Fn(Y n ∩ Ω) \ Fn(K))

⊆ FnF ((Fn(Y n) ∩ Ω) \ Fn(K)) = FnF ((Fn(Y n) \ Fn(K)) ∩ Ω).

Hence, by Theorem 3.25 (ii) and (iii), for each integer n ⩾ N ,

mF,ϕ(Ω \ Fn+nF
Ω (K)) ⩽ mF,ϕ(F

nF ((Fn(Y n) \ Fn(K)) ∩ Ω))

⩽
∫
Fn(Y n)\Fn(K)

exp(nFP (F, ϕ)− SnF ϕ) dmF,ϕ

⩽ exp(nFP (F, ϕ) + nF ∥ϕ∥∞)Cε/mF,ϕ(K).

Since ε > 0 was arbitrary, we get limn→+∞mF,ϕ

(
Ω \ Fn+nF

Ω (K)
)
= 0. This implies

lim
n→+∞

mF,ϕ(F
n
Ω(A)) ⩾ lim

n→+∞
mF,ϕ(F

n
Ω(K)) = 1.

Hence the measure-preserving transformation FΩ of the probability space (Ω, µF,ϕ) is exact.
Next, we observe that since FΩ is µF,ϕ-measurable, and is a measure-preserving transformation of

the probability space (Ω, µF,ϕ), it is clear that FΩ is also µF,ϕ-measurable, and is a measure-preserving
transformation of the probability space (Ω, µF,ϕ).

To prove that the measure-preserving transformation Ω of the probability space (Ω, µF,ϕ) is exact,
we consider a µF,ϕ-measurable set B ⊆ Ω with µF,ϕ(B) > 0. Since µF,ϕ ∈ P(Ω) is the completion
of the Borel probability measure µF,ϕ ∈ P(Ω), we can choose Borel subsets A and C of Ω such that
A ⊆ B ⊆ C ⊆ Ω and µF,ϕ(B) = µF,ϕ(A) = µF,ϕ(C) = µF,ϕ(A) = µF,ϕ(C). For each n ∈ N, we
have FnΩ(A) ⊆ FnΩ(B) ⊆ FnΩ(C), and both FnΩ(A) and FnΩ(C) are Borel sets by Remark 6.2. Since
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FΩ is forward quasi-invariant with respect to µF,ϕ by Theorem 5.1, it follows that µF,ϕ(FnΩ(A)) =
µF,ϕ(F

n
Ω(C)). Thus,

µF,ϕ(F
n
Ω(A)) = µF,ϕ(F

n
Ω(A)) = µF,ϕ(F

n
Ω(B)) = µF,ϕ(F

n
Ω(C)) = µF,ϕ(F

n
Ω(C)).

Therefore, limn→+∞ µF,ϕ(F
n
Ω(B)) = limn→+∞ µF,ϕ(F

n
Ω(A)) = 1. □

Corollary 6.4. Let f , C, F , d, ϕ satisfy the Assumptions in Section 4. We assume in addition that
f(C) ⊆ C and F ∈ Sub(f, C) is strongly primitive. Let µF,ϕ be the unique equilibrium state for FΩ and
ϕ|Ω, and mF,ϕ be as in Proposition 5.14. Then both µF,ϕ and mF,ϕ, as well as their corresponding
completions, are non-atomic.

Recall that a measure µ on a topological space X is called non-atomic if µ({x}) = 0 for each
x ∈ X.
Proof. Recall from Theorems 3.27 and 3.26 that µF,ϕ = (µb, µw) = ũF,ϕ(mb,mw), where mF,ϕ =
(mb,mw) is an eigenmeasure of L∗

F,ϕ and ũF,ϕ is an eigenfunction of LF,ϕ. Then by (3.27) in Theo-
rem 3.26, it suffices to prove that µF,ϕ is non-atomic.

Suppose that there exists a point x ∈ Ω with µF,ϕ({x}) > 0, then for each y ∈ Ω, we have
µF,ϕ({y}) ⩽ max{µF,ϕ({x}), 1− µF,ϕ({x})}.

Since the transformation FΩ of (Ω, µF,ϕ) is exact by Theorem 6.3, it follows that µF,ϕ({x}) = 1
and FΩ(x) = x. By Lemma 3.14, there exist n ∈ N and Xn ∈ Xn(F, C) such that x /∈ Xn. This
implies µF,ϕ(Xn) = 0, which contradicts the fact that µF,ϕ is a Gibbs measure for F , C, and ϕ (see
Theorem 3.26 and Definition 3.24).

The fact that the completions are non-atomic now follows immediately. □
Remark 6.5. Let f , C, F , d, ϕ satisfy the Assumptions in Section 4. We assume in addition that
f(C) ⊆ C and F ∈ Sub(f, C) is strongly primitive. Let µF,ϕ be the unique equilibrium state for FΩ

and ϕ|Ω from Theorem 5.1, and µF,ϕ its completion. Then by Theorem 2.7 in [Roh49], the complete
separable metric space (Ω, d) equipped the complete non-atomic measure µF,ϕ is a Lebesgue space
in the sense of V. Rokhlin. We omit V. Rokhlin’s definition of a Lebesgue space here and refer the
reader to [Roh49, Section 2], since the only results we will use about Lebesgue spaces are V. Rokhlin’s
definition of exactness of a measure-preserving transformation on a Lebesgue space and its implication
to the mixing properties. More precisely, in [Roh61], V. Rokhlin gave a definition of exactness for
a measure-preserving transformation on a Lebesgue space equipped with a complete non-atomic
measure, and showed [Roh61, Section 2.2] that in such a context, it is equivalent to our definition of
exactness in Definition 6.1. Moreover, he proved [Roh61, Section 2.6] that if a measure-preserving
transformation on a Lebesgue space equipped with a complete non-atomic measure is exact, then it
is mixing (he actually proved that it is mixing of all degrees, which we will not discuss here).

It is well-known and easy to see that if g is mixing (recall (3.2)), then it is ergodic (see for example,
[Wal82, Theorem 1.17]).

Corollary 6.6. Let f , C, F , d, ϕ satisfy the Assumptions in Section 4. We assume in addition that
f(C) ⊆ C and F ∈ Sub(f, C) is strongly primitive. Let µF,ϕ be the unique equilibrium state for FΩ

and ϕ|Ω, and µF,ϕ its completion. Then the measure-preserving transformation FΩ of the probability
space (Ω, µF,ϕ) (resp. (Ω, µF,ϕ)) is mixing and ergodic.

Proof. By Remark 6.5, the measure-preserving transformation FΩ of (Ω, µF,ϕ) is mixing and thus
ergodic. Since any µF,ϕ-measurable sets A, B ⊆ S2 are also µF,ϕ-measurable, the measure-preserving
transformation FΩ of (Ω, µF,ϕ) is also mixing and ergodic. □
Definition 6.7. Let T : X → X be a continuous map on a topological space X. We say T : X → X
is topologically transitive if for any non-empty open subsets U, V of X, there exists n ∈ N0 such that
Tn(U) ∩ V ̸= ∅. We say T : X → X is topologically mixing if for any non-empty open subsets U, V
of X, there exists N ∈ N0 such that Tn(U) ∩ V ̸= ∅ for any integer n ⩾ N .
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The following proposition is not used in this paper but should be of independent interest.
Proposition 6.8. Let f , C, F satisfy the Assumptions in Section 4. We assume in addition that
f(C) ⊆ C. Then the following statements hold:

(i) If F is irreducible, then F |Ω : Ω → Ω is topological transitive and has a dense forward orbit.
(ii) If F is primitive, then F |Ω : Ω → Ω is topological mixing.

Proof. (i) Assume that F is irreducible. Note that F (Ω) = Ω by Proposition 3.9 (iv).
We first show that F |Ω : Ω → Ω is topological transitive. Consider arbitrary non-empty open

subsets U ∩ Ω and V ∩ Ω of Ω, where U and V are open subsets of S2. Since U ∩ Ω ̸= ∅ and U is
open, by (3.11) and Definition 3.2, there exist N ∈ N and XN ∈ XN (F, C) such that XN ⊆ U .

Fix arbitrary y ∈ V ∩ Ω. Then by (3.11), there exists a sequence
{
Y k
}
k∈N of tiles such that

{y} =
∩
k∈N Y

k and Y k ∈ Xk(F, C) for each k ∈ N. By Proposition 3.6, we may assume without loss
of generality that Y k ⊆ X0

b for each k ∈ N. Since F is irreducible, by Lemma 3.13, there exist n0 ∈ N
and XN+n0

b ∈ XN+n0
b (F, C) such that XN+n0

b ⊆ XN . Then it follows from [BM17, Lemma 5.17 (i)]
and Proposition 3.9 (i) that Xk+N+n0 :=

(
FN+n0 |

X
N+n0
b

)−1(
Y k
)
∈ Xk+N+n0(F, C) for each k ∈ N.

Set x :=
(
FN+n0 |

X
N+n0
b

)−1
(y). Note that for each k ∈ N we have x ∈ Xk+N+n0 ⊆ XN since

y ∈ Y k. Thus by (3.11) and Proposition 3.9 (iii), we conclude that x ∈ XN ∩ Ω. This implies
y = FN+n0(x) ∈ FN+n0

(
XN ∩ Ω

)
⊆ FN+n0(U ∩ Ω). Since y ∈ V ∩ Ω, it follows immediately from

Definition 6.7 that F |Ω : Ω → Ω is topologically transitive.
We now prove that there exists x ∈ Ω such that {Fn(x)}n∈N is dense in Ω. By (3.11) and

Definition 3.2, it suffices to show that there exists x ∈ Ω such that for each Y ∈
∪
n∈NXn(F, C), there

exists k ∈ N satisfying F k(x) ∈ Y .
Since for each n ∈ N the set Xn(F, C) is finite, we can write the countable set

∪
n∈NXn(F, C) as

{Yn}n∈N. By Proposition 3.6, for each n ∈ N there exists cn ∈ {b,w} such that Yn ⊆ X0
cn . Since F

is irreducible, by Lemma 3.13, there exist n1 ∈ N and Xn1
c1 ∈ Xn1

c1 (F, C) such that Xn1
c1 ⊆ Z0 := Y1.

Then it follows from [BM17, Lemma 5.17 (i)] and Proposition 3.9 (i) that Z1 :=
(
Fn1 |Xn1

c1

)−1(
Y1
)
∈

Xk1(F, C) for some k1 ∈ N. Note that k1 > n1 and Z1 ⊆ Xn1
c1 . Similarly, by Lemma 3.13, there

exist n2 ∈ N and Xn2
c2 ∈ Xn2

c2 (F, C) such that Xn2
c2 ⊆ Z1 and n2 > k1. In particular, we have

Fn1(Xn2
c2 ) ⊆ Fn1(Z1) = Y1. It follows from [BM17, Lemma 5.17 (i)] and Proposition 3.9 (i) that

Z2 :=
(
Fn2 |Xn2

c2

)−1(
Y2
)
∈ Xk2(F, C) for some k2 ∈ N. Note that k2 > n2 and Z2 ⊆ Xn2

c2 . Then we can
inductively construct a strictly increasing sequence {nj}j∈N of integers and a sequence

{
X
nj
cj

}
j∈N

of tiles such that Xnj
cj ∈ X

nj
cj (F, C), X

nj+1
cj+1

⊆ X
nj
cj , and Fnj

(
X
nj+1
cj+1

)
⊆ Yj for each j ∈ N. Since

limj→+∞ nj = +∞, it follows from Definition 3.2 that the set
∩
j∈NX

nj
cj is a singleton set. We write

{x} =
∩
j∈NX

nj
cj . Then by (3.11) and Proposition 3.9 (iii), we have x ∈ Ω. This finishes the proof

since Fnj (x) ∈ Fnj
(
X
nj+1
cj+1

)
⊆ Yj for each j ∈ N.

(ii) Let F be primitive and nF be the constant from Definition 3.12, which depends only on F
and C. Note that F (Ω) = Ω by Proposition 3.9 (iv). Consider arbitrary non-empty open subsets
U ∩ Ω and V ∩ Ω of Ω, where U and V are open subsets of S2. Since U ∩ Ω ̸= ∅ and U is open, by
(3.11) and Definition 3.2, there exist N ∈ N and XN ∈ XN (F, C) such that XN ⊆ U . We claim that
Ω ⊆ FN+nF

(
XN ∩ Ω

)
.

Indeed, for each y ∈ Ω, by (3.11), there exists a sequence
{
Y k
}
k∈N of tiles such that {y} =∩

k∈N Y
k and Y k ∈ Xk(F, C) for each k ∈ N. By Proposition 3.6, we may assume without loss

of generality that Y k ⊆ X0
b for each k ∈ N. Since F is primitive, by Lemma 3.14, there exists

XN+nF
b ∈ XN+nF

b (F, C) such that XN+nF
b ⊆ XN . Then it follows from [BM17, Lemma 5.17 (i)]

and Proposition 3.9 (i) that Xk+N+nF :=
(
FN+nF |

X
N+nF
b

)−1(
Y k
)
∈ Xk+N+nF (F, C) for each k ∈ N.

Set x :=
(
FN+nF |

X
N+nF
b

)−1
(y). Note that for each k ∈ N we have x ∈ Xk+N+nF ⊆ XN since
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y ∈ Y k. Thus by (3.11) and Proposition 3.9 (iii), we conclude that x ∈ XN ∩ Ω. This implies
Ω ⊆ FN+nF

(
XN ∩ Ω

)
since y ∈ Ω is arbitrary and y = FN+nF (x).

Hence, for each integer n ⩾ N + nF , we have
(F |Ω)n(U ∩ Ω) = Fn(U ∩ Ω) ⊇ Fn

(
XN ∩ Ω

)
⊇ Fn−N−nF (Ω) = Ω ⊇ V ∩ Ω ̸= ∅.

This implies that F |Ω : Ω → Ω is topologically mixing by Definition 6.7. □

7. Equidistribution

In this section, we establish equidistribution results for preimages for subsystems of expanding
Thurston maps.
Theorem 7.1. Let f , C, F , d, and ϕ satisfy the Assumptions in Section 4. We assume in addition
that f(C) ⊆ C and F ∈ Sub(f, C) is strongly primitive. Let µF,ϕ be the unique equilibrium state for
F |Ω and ϕ|Ω, and let mF,ϕ be as in Proposition 5.14. Fix arbitrary sequence {xn}n∈N of points in S2

and sequence {cn}n∈N of colors in {b,w} that satisfies xn ∈ X0
cn for each n ∈ N. For each n ∈ N, we

define the Borel probability measures

νn :=
1

Zn(ϕ)

∑
y∈F−n(xn)

degcn(F
n, y) exp

(
SFn ϕ(y)

)
δy,

ν̂n :=
1

Zn(ϕ)

∑
y∈F−n(xn)

degcn(F
n, y) exp

(
SFn ϕ(y)

) 1
n

n−1∑
i=0

δF i(y),

where Zn(ϕ) :=
∑

y∈F−n(xn)
degcn(F

n, y) exp
(
SFn ϕ(y)

)
. Then we have

νn
w∗
−→ mF,ϕ as n→ +∞,(7.1)

ν̂n
w∗
−→ µF,ϕ as n→ +∞.(7.2)

We follow the conventions discussed in Remarks 3.18 and 3.19 in this subsection. Recall that S̃ is
the split sphere defined in Definition 3.17.

Proof. Fix an arbitrary u ∈ C(S2). We denote by ũ the continuous function on S̃ defined by
ũ(z̃) := u(z) for each z̃ = (z, c) ∈ S̃.

We prove (7.1) by showing that limn→+∞⟨νn, u⟩ = ⟨mF,ϕ, u⟩. Indeed, by Lemma 3.22, Defini-
tion 3.20, and (3.15), we have

⟨νn, u⟩ =
LnF,ϕ(ũ)(xn, cn)
LnF,ϕ

(
1
S̃

)
(xn, cn)

=
Ln
F,ϕ

(ũ)(xn, cn)

Ln
F,ϕ

(
1
S̃

)
(xn, cn)

.

Note that by (5.15) in Theorem 5.12,∥∥Ln
F,ϕ

(1
S̃
)− ũF,ϕ

∥∥
C(S̃)

−→ 0 and
∥∥∥∥LnF,ϕ(ũ)− ũF,ϕ

∫
ũd(mb,mw)

∥∥∥∥
C(S̃)

−→ 0

as n→ +∞, where ũF,ϕ ∈ C(S̃) is an eigenfunction of LF,ϕ from Theorem 3.26, and (mb,mw) ∈ P(S̃)
is an eigenmeasure of L∗

F,ϕ from Theorem 3.25. Then it follows from (3.27) in Theorem 3.26 that

lim
n→+∞

Ln
F,ϕ

(ũ)(xn, cn)

Ln
F,ϕ

(
1
S̃

)
(xn, cn)

=

∫
ũd(mb,mw) =

∫
udmF,ϕ.

Hence, (7.1) holds.
Finally, (7.2) follows directly from Lemma 5.15. □

8. Large deviation principles for subsystems

In this section, we prove prove Theorem 1.2 and its corollaries, Corollaries 1.3 and 1.4.
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8.1. Level-2 large deviation principles. We first review some basic concepts and results from
large deviation theory. We refer the reader to [DZ09, Ell12, RAS15] for more details.

Let {ξn}n∈N be a sequence of Borel probability measures on a Hausdorff topological space X . We
say that {ξn}n∈N satisfies a large deviation principle in X if there exists a lower semi-continuous
function I : X → [0,+∞] such that

(8.1) lim inf
n→+∞

1

n
log ξn(G) ⩾ − inf

G
I for all open G ⊆ X ,

and

(8.2) lim sup
n→+∞

1

n
log ξn(K) ⩽ − inf

K
I for all closed K ⊆ X ,

where log 0 = −∞ and inf ∅ = +∞ by convention. Such a function I is called a rate function, and
we say that I is a good rate function if the set {x ∈ X : I(x) ⩽ α} is compact for every α ∈ [0,+∞).
If X is regular, then the rate function I is unique.

The following contraction principle shows that the large deviation principle transfers nicely through
continuous functions.

Theorem 8.1 (Contraction principle [DZ09, Theorem 4.2.1]). Let X and Y be Hausdorff topological
spaces, and let g : X → Y be a continuous map. Consider a sequence {ξn}n∈N of Borel probability
measures on X that satisfies a large deviation principle in X with a good rate function I : X → [0,+∞].
For each y ∈ Y, define

J(y) := inf{I(x) : x ∈ X , y = g(x)}.
Then J is a good rate function on Y, and the sequence {g∗(ξn)}n∈N satisfies a large deviation principle
in Y with the rate function J : Y → [0,+∞].

Definition 8.2. Let T : X → X be a continuous map on a compact metric space X. The entropy
map of T is the map µ 7→ hµ(T ), which is defined on M(X,T ) and has values in [0,+∞]. Here
M(X,T ) is equipped with the weak∗ topology. We say that the entropy map of T is upper semi-
continuous if lim supn→+∞ hµn(T ) ⩽ hµ(T ) holds for every sequence {µn}n∈N of Borel probability
measures on X that converges to µ ∈ M(X,T ) in the weak∗ topology.

We record the following theorem due to Y. Kifer [Kif90, Theorem 4.3], as reformulated by H. Com-
man and J. Rivera-Letelier [CRL11, Theorem C].

Theorem 8.3 (Y. Kifer [Kif90]; H. Comman & J. Rivera-Letelier [CRL11]). Let X be a compact
metrizable topological space, and let g : X → X be a continuous map. Fix φ ∈ C(X), and let H be
a dense vector subspace of C(X) with respect to the uniform norm. Let Iϕ : P(X) → [0,+∞] be the
function defined by

Iφ(µ) :=

{
P (g, φ)− hµ(g)−

∫
φdµ if µ ∈ M(X, g);

+∞ if µ ∈ P(X) \M(X, g).

We assume the following conditions are satisfied:

(i) The measure-theoretic entropy hµ(g) of g, as a function of µ defined on M(X, g) (equipped
with the weak∗ topology), is finite and upper semi-continuous.

(ii) For each ψ ∈ H, there exists a unique equilibrium state for the map g and the potential φ+ψ.
Then every sequence {ξn}n∈N of Borel probability measures on P(X) that satisfies the property

that for each ψ ∈ H,

(8.3) lim
n→+∞

1

n
log

∫
P(X)

exp

(
n

∫
ψ dµ

)
dξn(µ) = P (g, φ+ ψ)− P (g, φ)
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satisfies a large deviation principle with rate function Iφ, and it converges in the weak∗ topology
to the Dirac measure supported on the unique equilibrium state for the map g and the potential φ.
Furthermore, for each convex open subset G of P(X) containing some invariant measure, we have

lim
n→+∞

1

n
log ξn(G) = lim

n→+∞

1

n
log ξn(G) = − inf

G
Iφ = − inf

G
Iφ.

Recall that P (g, φ) is the topological pressure of the map g with respect to the potential φ.

8.2. Characterizations of pressures. In this subsection, we characterize the pressure function in
terms of Birkhoff averages (Proposition 8.4) and iterated preimages (Proposition 8.5).
Proposition 8.4. Let f , C, F , d, ϕ, β satisfy the Assumptions in Section 4. We assume in addition
that f(C) ⊆ C and F ∈ Sub(f, C) is strongly irreducible. Denote Ω := Ω(F, C). Then for each
ψ ∈ C0,β(S2, d), we have

(8.4) P (F, ϕ+ ψ)− P (F, ϕ) = lim
n→+∞

1

n
log

∫
exp
(
SFn ψ

)
dµF,ϕ,

where P (F, ϕ) and P (F, ϕ+ ψ) are defined in (3.14).
Proof. Recall from Theorems 3.27 and 3.26 that µF,ϕ = (µb, µw) = ũF,ϕ(mb,mw), where mF,ϕ =
(mb,mw) is an eigenmeasure of L∗

F,ϕ from Theorem 3.25 and ũF,ϕ is an eigenfunction of LF,ϕ from
Theorem 3.26. Recall from Definition 3.17 and Remark 3.18 that S̃ = X0

b ⊔X0
w is the disjoint union

of X0
b and X0

w. Note that by Theorem 3.25 (iii), we have L∗
F,ϕ(mb,mw) = eP (F,ϕ)(mb,mw). Since

inf
S̃
ũF,ϕ > 0 and sup

S̃
ũF,ϕ < +∞, it is enough to prove the limit with µF,ϕ replaced by mF,ϕ.

For each n ∈ N we have∫
S2

exp
(
SFn ψ

)
dmF,ϕ =

∫
S̃

(
eS

F
n ψ|X0

b
, eS

F
n ψ|X0

w

)
d(mb,mw)

=

∫
S̃

(
eS

F
n ψ|X0

b
, eS

F
n ψ|X0

w

)
d
(
e−nP (F,ϕ)(L∗

F,ϕ)
n(mb,mw)

)
= e−nP (F,ϕ)

∫
S̃
LnF,ϕ

(
eS

F
n ψ|X0

b
, eS

F
n ψ|X0

w

)
d(mb,mw).

Using LnF,ϕ
(
eS

F
n ψ|X0

b
, eS

F
n ψ|X0

w

)
= LnF,ϕ+ψ1S̃ , the assertion of the proposition is then a direct conse-

quence of (3.28) in Theorem 3.26. □
The following proposition characterizes topological pressures in terms of iterated preimages.

Proposition 8.5. Let f , C, F , d, ϕ, β satisfy the Assumptions in Section 4. We assume in addition
that f(C) ⊆ C and F ∈ Sub(f, C) is strongly irreducible. Denote Ω := Ω(F, C). Then for each
y0 ∈ Ω \ C, we have

(8.5) P (F, ϕ) = P (F |Ω, ϕ|Ω) = lim
n→+∞

1

n
log

∑
x∈(F |Ω)−n(y0)

exp
(
SFn ϕ(x)

)
,

where P (F, ϕ) is defined in (3.14) and P (F |Ω, ϕ|Ω) is defined in (3.1).
Proposition 8.5 follows immediately from [LSZ25, Proposition 6.20 and Theorem 6.29]. Note that

Ω \ C ̸= ∅ by [LSZ25, Proposition 5.20 (ii)].

8.3. Proof of large deviation principles. In this subsection, we establish Theorem 1.2 by applying
Theorem 8.3.

By the following two lemmas, we can show that conditions (i) and (ii) in Theorem 8.3 are satisfied
in our context.
Lemma 8.6. Let T : X → X be a continuous map on a compact metric space X. Suppose that the
entropy map of T is upper semi-continuous. Let Y be a compact subset of X with T (Y ) ⊆ Y . Then
the entropy map of T |Y is upper semi-continuous.
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Proof. Since M(Y, T |Y ) ⊆ M(X,T ) and hµ(T |Y ) = hµ(T ) for each µ ∈ M(Y, T |Y ), the statement
follows. □
Lemma 8.7. Let (X, d) be a metric space and Y be a subset of X. Then for each β ∈ (0, 1], we have

C0,β(Y, d) =
{
ψ|Y : ψ ∈ C0,β(X, d)

}
.

Proof. For each ψ ∈ C0,β(X, d), it follows immediately from the definition of Hölder continuity that
ψ|Y ∈ C0,β(Y, d). The converse direction also holds since every function in C0,β(Y, d) can extend to
a function in C0,β(X, d) (see for example, [Hei01, Theorem 6.2 and p. 44]). □

Now we are ready to prove the level-2 large deviation principles.

Proof of Theorem 1.2. First note that by [LSZ25, Remark 3.12], if f : X → X is a postcritically-
finite rational map with no periodic critical points on the Riemann sphere X = Ĉ, then the classes
of Hölder continuous functions on Ĉ equipped with the chordal metric and on S2 = Ĉ equipped with
any visual metric for f are the same. Thus we only need to prove the case where f : S2 → S2 is an
expanding Thurston map with no periodic critical points on a topological 2-sphere S2 equipped with
a visual metric d for f .

Let ϕ ∈ C0,β(S2, d) for some β ∈ (0, 1].
We apply Theorem 8.3 with X = Ω, g = F |Ω, φ = ϕ|Ω, and H = C0,β(Ω, d). Note that P (F, ϕ) =

P (F |Ω, ϕ|Ω) by Proposition 8.5, and C0,β(Ω, d) is dense in C(Ω) with respect to the uniform norm
by Lemma 5.17. By [LSZ25, Lemma 6.4] and (3.29) in Theorem 3.27, the measure-theoretic entropy
hµ(F |Ω) is finite for each µ ∈ M(Ω, F |Ω). Since f has no periodic critical points, it follows from
[LS24, Theorem 1.1] that the entropy of f is upper semi-continuous. Then by Lemma 8.6, the
entropy map of F |Ω = f |Ω is upper semi-continuous. Thus, condition (i) in Theorem 8.3 is satisfied.
Condition (ii) in Theorem 8.3 follows from Theorem 5.1 and Lemma 8.7.

It now suffices to verify (8.3) for each of the sequences {Σn}n∈N and {Ωn(xn)}n∈N of Borel prob-
ability measures on P(Ω).

Fix an arbitrary ψ ∈ C0,β(Ω, d). By Lemma 8.7, there exists ψ̃ ∈ C0,β(S2, d) such that ψ̃|Ω = ψ.
For the sequence {Σn}n∈N, by (8.4) in Proposition 8.4 and (3.29) in Theorem 3.27, we have

lim
n→+∞

1

n
log

∫
P(Ω)

exp

(
n

∫
ψ dµ

)
dΣn(µ) = lim

n→+∞

1

n
log

∫
Ω
exp(SFn ψ) dµF,ϕ

= P (F |Ω, ϕ|Ω + ψ)− P (F |Ω, ϕ|Ω).
Similarly, for the sequence {Ωn(xn)}n∈N, by (8.5) in Proposition 8.5, we have

lim
n→+∞

1

n
log

∫
P(Ω)

exp

(
n

∫
ψ dµ

)
dΩn(xn)(µ)

= lim
n→+∞

1

n
log

∑
y∈(F |Ω)−n(xn)

exp(SFn ϕ(y))∑
y′∈(F |Ω)−n(xn)

exp(SFn ϕ(y
′))
e
∑n−1

i=1 ψ(F i(y))

= lim
n→+∞

1

n

(
log

∑
y∈(F |Ω)−n(xn)

eS
F
n (ϕ+ψ̃)(y) − log

∑
y′∈(F |Ω)−n(xn)

eS
F
n ϕ(y

′)

)
= P (F |Ω, ϕ|Ω + ψ)− P (F |Ω, ϕ|Ω).

Therefore, all the assertions of Theorem 1.2 follow from Theorem 8.3. □
We finally prove Corollary 1.3, which gives a characterization of measure-theoretic pressure.

Proof of Corollary 1.3. Fix µ ∈ M(Ω, F |Ω) and a convex local basis Gµ at µ. We show that (1.5)
in Corollary 1.3 holds. By (1.3) and the upper semi-continuity of hµ(F |Ω) ([LS24, Theorem 1.1] and
Lemma 8.6), we get

−Iϕ(µ) = inf
G∈Gµ

sup
G

(−Iϕ) = inf
G∈Gµ

(
− inf

G
Iϕ
)
.



42 ZHIQIANG LI AND XIANGHUI SHI

Then it follows from (1.3) and (1.4) in Theorem 1.2 that

−P (F, ϕ) + hµ(F |Ω) +
∫
ϕ dµ = −Iϕ(µ) = inf

G∈Gµ

(
− inf

G
Iϕ
)

= inf
G∈Gµ

{
lim

n→+∞

1

n
logµF,ϕ({x ∈ Ω : Vn(x) ∈ G})

}
= inf

G∈Gµ

{
lim

n→+∞

1

n
log

∑
y∈(F |Ω)−n(xn),Vn(y)∈G

exp
(
SFn ϕ(y)

)
Zn(ϕ)

}
,

where we write Zn(ϕ) :=
∑

y∈(F |Ω)−n(xn)
exp
(
SFn ϕ(y)

)
. Note that by Propositions 8.5 we have

P (F, ϕ) = limn→+∞
1
n logZn(ϕ). Therefore, (1.5) holds. □

We show that Corollary 1.4 follows from Theorem 1.2 and the general theory of large deviations.
Proof of Corollary 1.4. The first assertion follows immediately from Theorems 1.2 and 8.1.

We now consider an arbitrary interval K ⊆ R that intersects (cψ, dψ). Note that the rate function
J defined by (1.6) is bounded on [cψ, dψ] and constantly equal to +∞ on R \ [cψ, dψ]. Furthermore,
it follows from the convexity of Iϕ that J is convex on R, and therefore continuous on (cψ, dψ). This
implies that inf int(K) J = infK J since K ∩ (cψ, dψ) ̸= ∅. Then (1.7) follows from (8.1) and (8.2). □
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