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Abstract. Expanding Thurston maps were introduced by M. Bonk and D. Meyer with motivation
from complex dynamics and Cannon’s conjecture from geometric group theory via Sullivan’s dictio-
nary. In this paper, we show that the entropy map of an expanding Thurston map is upper semi-
continuous if and only if the map has no periodic critical points. For all expanding Thurston maps,
even in the presence of periodic critical points, we show that ergodic measures are entropy-dense and
establish level-2 large deviation principles for the distributions of Birkhoff averages, periodic points,
and iterated preimages. It follows that iterated preimages and periodic points are equidistributed
with respect to the unique equilibrium state for an expanding Thurston map and a potential that
is Hölder continuous with respect to a visual metric on S2. In particular, our results answer two
questions posed in [Li15] and generalize the corresponding results there.

One of the main tools used in this paper is called the subsystems of expanding Thurston maps,
which were inspired by a translation of the concept of subgroups from geometric group theory via
Sullivan’s dictionary, and have been investigated in [LSZ25, LS24].
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1. Introduction

A Thurston map is a (non-homeomorphic) branched covering map on a topological 2-sphere S2

that is postcritically-finite, meaning that each of its critical points has a finite orbit under iteration.
The most important examples are given by postcritically-finite rational maps on the Riemann sphere
Ĉ. While Thurston maps are purely topological objects, a deep theorem due to W.P. Thurston
characterizes Thurston maps that are, in a suitable sense, described in the language of topology
and combinatorics, equivalent to postcritically-finite rational maps (see [DH93]). This suggests that
for the relevant rational maps, an explicit analytic expression is not so important, but rather a
geometric-combinatorial description.

In the early 1980s, D.P. Sullivan introduced a “dictionary” that is now known as Sullivan’s dictio-
nary, which connects two branches of conformal dynamics: the iteration theory of rational maps and
the actions of Kleinian groups. Under Sullivan’s dictionary, the counterpart to Thurston’s theorem in
geometric group theory is Cannon’s Conjecture [Can94]. Inspired by Sullivan’s dictionary and their
interest in Cannon’s Conjecture, M. Bonk and D. Meyer [BM10, BM17], as well as P. Haïssinsky
and K.M. Pilgrim [HP09], studied a subclass of Thurston maps, called expanding Thurston maps,
by imposing some additional condition of expansion (see Definition 3.5). These maps are charac-
terized by a contraction property for inverse images (see Subsection 3.2 for the precise definition).
In particular, a rational Thurston map on Ĉ is expanding if and only if its Julia set is equal to Ĉ.
For an expanding Thurston map on S2, we can equip S2 with a natural class of metrics d, called
visual metrics, that are snowflake equivalent to each other and are constructed in a similar way as
the visual metrics on the boundary ∂∞G of a Gromov hyperbolic group G (see [BM17, Chapter 8]
for details, and see [HP09] for a related construction).

In this paper we study the dynamics and properties of expanding Thurston maps from the point
of view of ergodic theory. The ergodic theory for expanding Thurston maps has been investigated
in [BM10, BM17, HP09, Li18, Li15, Li17]. In [Li18], the first-named author developed the thermo-
dynamic formalism and investigated the existence, uniqueness, and other properties of equilibrium
states for expanding Thurston maps. In [Li15], for expanding Thurston maps without periodic crit-
ical points, by proving that the (measure-theoretic) entropy map is upper semi-continuous and then
applying a general framework devised by Y. Kifer [Kif90] and reformulated by H. Comman and
J. Rivera-Letelier [CRL11], the first-named author established level-2 large deviation principles for
iterated preimages and periodic points with respect to equilibrium states and obtains the correspond-
ing equidistribution results.

However, for expanding Thurston maps with a periodic critical point, upper semi-continuity of the
entropy map, level-2 large deviation principles, and equidistribution of periodic points with respect
to equilibrium states remained open.

In the present paper, for any expanding Thurston map, even in the presence of periodic critical
points, we prove entropy density of ergodic measures, establish level-2 large deviation principles for
the distributions of Birkhoff averages, periodic points, and iterated preimages, and conclude that
periodic points and iterated preimages are equidistributed with respect to the unique equilibrium
state for a potential that is Hölder continuous with respect to a visual metric on S2. Specifically,
these results extend the corresponding findings in [Li15], and the methods we use do not depend on
the upper semi-continuity of the entropy map.

Our results answer the two questions posed in [Li15] by the first-named author of the current
paper. More precisely, we show that the entropy map of an expanding Thurston map f : S2 → S2

is not upper semi-continuous when f has at least one periodic critical point. This result gives a
negative answer to Question 1 posed in [Li15, p. 523]. Moreover, it suggests that the method used
there to prove large deviation principles does not apply to expanding Thurston maps with at least
one periodic critical point. In order to answer Question 2 posed in [Li15, p. 523] positively, i.e.,
obtain the equidistribution results even in the presence of periodic critical points, we show that
the equilibrium state is the unique minimizer of the rate function and then apply the level-2 large
deviation principles.
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One of the tools that used in this paper are called subsystems of expanding Thurston maps
(see Subsection 3.3), introduced and investigated in [LSZ25, LS24]. The notion of subsystems is
inspired by a translation of the notion of subgroups from geometric group theory via Sullivan’s
dictionary. We remark that subsystems are not only useful tools for studying the ergodic theory
of expanding Thurston maps, but they also have geometric significance in themselves. According
to Sullivan’s dictionary, an expanding Thurston map is associated with a Gromov hyperbolic group
whose boundary at infinity is S2. In this context, a subsystem corresponds to a Gromov hyperbolic
group whose boundary at infinity is a subset of S2. In particular, for Gromov hyperbolic groups whose
boundary at infinity is a Sierpiński carpet, there is an analog of Cannon’s conjecture—the Kapovich–
Kleiner conjecture. It predicts that these groups arise from some standard situation in hyperbolic
geometry. Similar to Cannon’s conjecture, one can reformulate the Kapovich–Kleiner conjecture in an
equivalent way as a question related to quasisymmetric uniformization. For subsystems, it is easy to
find examples where the tile maximal invariant set is homeomorphic to the standard Sierpiński carpet
(see Subsection 3.3 for examples of subsystems). In this case, an analog of the Kapovich–Kleiner
conjecture for subsystems is under investigation [BLL].

The main challenges in this work arise from two factors: the non-uniform expansion of the dynamics
and the lack of upper semi-continuity of the entropy map due to periodic critical points. To tackle the
first challenge, we need to investigate the geometric properties of visual metrics and their interaction
with the combinatorial structures associated with subsystems. On the one hand, by utilizing visual
metrics, we can transform these difficulties into more manageable topological and combinatorial
problems. On the other hand, by constructing suitable subsystems and applying the thermodynamic
formalism for subsystems developed in the series of papers [LSZ25, LS24], we can obtain measures
with controllable measure-theoretic pressures, enabling us to obtain the desired bounds and prove
our results. Due to the second challenge, one cannot prove large deviation principles by applying a
variant of Y. Kifer’s result [Kif90, Theorem 4.3], as formulated by H. Comman and J. Rivera-Letelier
[CRL11, Theorem C], which is the main necessary tool used in [CRL11, Li15]. Our proofs follow a
different approach and, in particular, do not rely on the upper semi-continuity of the entropy map
(see Subsection 1.2 for details).

We remark that in [DPTUZ21], the authors addressed the periodic critical points by first blowing
up the sphere S2 along the preimages of the critical orbits, thereby obtaining a coarse expanding map
on a Sierpiński carpet without periodic critical points. They then encoded the dynamics of the system
using a geometric coding tree, following the approach in [Prz85], which yields a semi-conjugacy with
the shift map. The key point is that this semi-conjugacy preserves the entropy of an equilibrium
state (we also use this property to prove that the equilibrium state is the unique minimizer of the
rate function, see Proposition 7.3 (iii) and Theorem 7.5). Therefore, the authors can apply classical
results for shift maps to a coarse expanding map with periodic critical points without any loss of
entropy, thereby establishing the thermodynamic formalism and statistical laws. However, in our
context, we do not see any obvious way to extend such a property to general invariant measures,
not just the equilibrium state. In addition, the relationship between the quantities associated with
periodic orbits in expanding Thurston maps and shift maps remains unclear and maybe insufficient
for proving large deviation principles.

1.1. Main results. Our results consist of three parts. We first show that the entropy map of an
expanding Thurston map f : S2 → S2 is upper semi-continuous if and only if f has no periodic
critical points. Then for every expanding Thurston map, we prove that the set of ergodic measures is
entropy-dense in the space of invariant measure. Finally, we establish level-2 large deviation principles
for the distributions of Birkhoff averages, periodic points, and iterated preimages, and conclude that
periodic points and iterated preimages are equidistributed with respect to the equilibrium state.

We now state our results precisely.

Upper semi-continuity of entropy. The entropy map of a continuous map T : X → X defined on a
compact metric space (X, d) is the map µ 7→ hµ(T ) which is defined on the space of T -invariant
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Borel probability measures M(X,T ), where hµ(T ) is the measure-theoretic entropy of T for µ (see
Subsection 3.1 and Definition 5.1) and M(X,T ) is equipped with the weak∗-topology.

Our first result is about the upper semi-continuity of the entropy map for expanding Thurston
maps.

Theorem 1.1. Let f : S2 → S2 be an expanding Thurston map. Then the entropy map of f is upper
semi-continuous if and only if f has no periodic critical points.

We remark that for expanding Thurston maps without periodic critical points, the upper semi-
continuity of the entropy map has been established in [Li15, Corollary 1.3] by proving a stronger
property called asymptotic h-expansiveness (see [Mis76]). In the present paper, we complete the “only
if” part in Theorem 1.1 through concrete constructions. These constructions show that the entropy
map is not upper semi-continuous even when restricted to the set of ergodic measures. Moreover, we
estimate the defects in semi-continuity (see Theorem 5.5).

The continuity properties of the entropy map have been studied for a long time. A classical result
is that for an expansive homeomorphism defined on a compact metric space the entropy map is upper
semi-continuous (see for example, [Wal82, Theorem 8.2]). M.Yu. Lyubich [Lyu83, Corollary 1] showed
that for rational maps on the Riemann sphere the entropy map is upper semi-continuous. Another
fundamental result is that for a C∞ map defined on a smooth compact manifold the entropy map
is upper semi-continuous (see [New89, Theorem 4.1] and [Yom87]). While for Cr diffeomorphisms
with finite r, upper semi-continuity of the entropy map may fail (for examples in dimension four
see [Mis73] and for examples in dimension two see [Buz14]). In this setting, J. Buzzi, S. Crovisier,
and O. Sarig estimated the discontinuities of the entropy map in terms of Lyapunov exponents (see
[BCS22]). In the non-compact setting, for transitive countable Markov shift, the entropy map is
upper semi-continuous if the shift map has finite topological entropy (see [ITV22, Theorem 8.1]).
Otherwise the entropy map may not be upper semi-continuous (see [JMU05, p. 774]).

Entropy density of ergodic measures. Let T : X → X be a continuous map on a compact metric
space (X, d) and M(X,T ) be the set of T -invariant Borel probability measures on X. We say that a
subset N ⊆ M(X,T ) is entropy-dense in M(X,T ) if, for each µ ∈ M(X,T ), there exists a sequence
{µn}n∈N in N such that {µn}n∈N converges to µ in the weak∗-topology and hµn(T ) → hµ(T ) as
n→ +∞.

We show that the set of ergodic measures is entropy-dense for every expanding Thurston map.

Theorem 1.2. For an expanding Thurston map f : S2 → S2, the set of ergodic f -invariant measures
is entropy-dense in M(S2, f).

Entropy density of ergodic measures guarantees that one can approximate non-ergodic measures
with ergodic ones with similar entropy and similar expectations. Such a property plays an important
role in large deviation theory, which was used in [FO88], and has been studied in various settings such
as Zd subshifts of finite type [EKW94], uniformly hyperbolic systems and β-shifts [PS05], ergodic
group automorphisms [Yam09], and countable Markov Shifts [Tak20]. In addition, it has applications
in the multifractal analysis (see for example, [IJ15]).

Level-2 large deviation principles. In order to present our results precisely, we briefly review some
key concepts. We refer the reader to Subsection 7.1 for a detailed discussion.

Let {ξn}n∈N be a sequence of Borel probability measures on a Hausdorff topological space X . We
say that {ξn}n∈N satisfies a large deviation principle in X if there exists a lower semi-continuous
function I : X → [0,+∞] such that

lim inf
n→+∞

1

n
log ξn(G) ⩾ − inf

G
I for all open G ⊆ X ,

and
lim sup
n→+∞

1

n
log ξn(K) ⩽ − inf

K
I for all closed K ⊆ X ,
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where log 0 = −∞, inf ∅ = +∞, and sup ∅ = −∞. Such a function I is called a rate function, and
we call x ∈ X a minimizer if I(x) = 0 holds.

For expanding Thurston maps, we establish level-2 large deviation principles for the distributions
of Birkhoff averages, periodic points, and iterated preimages.

Theorem 1.3. Let f : S2 → S2 be an expanding Thurston map and d be a visual metric on S2 for f .
Let ϕ be a real-valued Hölder continuous function on S2 with respect to the metric d. Let µϕ be the
unique equilibrium state for f and ϕ. We denote by P (f, ϕ) the topological pressure of f with respect
to ϕ, and by P(S2) the space of Borel probability measures on S2 equipped with the weak∗-topology.

For each n ∈ N, let Vn : S2 → P(S2) be the continuous function defined by

(1.1) Vn(x) :=
1

n

n−1∑
i=0

δf i(x),

and define Snϕ(x) :=
∑n−1

i=0 ϕ(f
i(x)) for each x ∈ S2. Fix an arbitrary sequence {wn}n∈N of real-

valued functions on S2 satisfying wn(x) ∈
[
1,degfn(x)

]
for each n ∈ N and each x ∈ S2. For each

n ∈ N, we consider the following Borel probability measures on P(S2).
Birkhoff averages. Σn := (Vn)∗(µϕ) (i.e., Σn is the push-forward of µϕ by Vn : S2 → P(S2)).
Periodic points. With Pern(f) := {p ∈ S2 : fn(p) = p}, put

(1.2) Ωn :=
∑

p∈Pern(f)

wn(p) exp(Snϕ(p))∑
p′∈Pern(f)wn(p

′) exp(Snϕ(p′))
δVn(p).

Iterated preimages. Given a sequence {xj}j∈N of points in S2, put

(1.3) Ωn(xn) :=
∑

y∈f−n(xn)

wn(y) exp(Snϕ(y))∑
y′∈f−n(xn)wn(y

′) exp(Snϕ(y′))
δVn(y).

Then each of the sequences {Σn}n∈N, {Ωn}n∈N, and {Ωn(xn)}n∈N satisfies a large deviation principle
in P(S2) with the rate function Iϕ : P(S2) → [0,+∞] given by

(1.4) Iϕ(µ) := − inf
G∋µ

sup
G
Fϕ,

where the infimum is taken over all open sets G ⊆ P(S2) containing µ, and Fϕ : P(S2) → [−∞, 0] is
defined by

(1.5) Fϕ(µ) :=

{
hµ(f) +

∫
ϕ dµ− P (f, ϕ) if µ ∈ M(S2, f);

−∞ if µ ∈ P(S2) \M(S2, f).

Moreover, µϕ is the unique minimizer of the rate function Iϕ, and each of the sequences {Σn}n∈N,
{Ωn}n∈N, and {Ωn(xn)}n∈N converges to δµϕ in the weak∗ topology. Furthermore, for each convex
open subset G of P(S2) containing some invariant measure, we have infG Iϕ = infG Iϕ,

(1.6) lim
n→+∞

1

n
log Σn(G) = lim

n→+∞

1

n
log Ωn(G) = lim

n→+∞

1

n
log Ωn(xn)(G) = − inf

G
Iϕ,

and (1.6) remains true with G replaced by its closure G.

Remark 1.4. In Theorem 1.3, it can be verified that supG Fϕ = supG(−Iϕ) for all open subsets
G ⊆ P(S2), and the rate function Iϕ is convex and lower semi-continuous. We call −Iϕ the upper
semi-continuous regularization of Fϕ. Note that if f has at least one periodic critical point, then the
rate function Iϕ is not equal to −Fϕ, because the entropy map of f is not upper semi-continuous
(see Theorem 1.1). More precisely, it follows from Theorem 1.1 that Iϕ = −Fϕ if and only if f has
no periodic critical points.

As an immediate consequence of Theorem 1.3, we get the following corollary.
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Corollary 1.5. Under the assumptions of Theorem 1.3, for each µ ∈ M(S2, f) and each convex
local basis Gµ of P(S2) at µ, we have

−Iϕ(µ) = inf
G∈Gµ

{
lim

n→+∞

1

n
logµϕ({x ∈ S2 : Vn(x) ∈ G})

}
= inf

G∈Gµ

{
lim

n→+∞

1

n
log

∑
p∈Pern(f),Vn(p)∈G

wn(p) exp(Snϕ(p))

}
− P (f, ϕ)

= inf
G∈Gµ

{
lim

n→+∞

1

n
log

∑
y∈f−n(xn),Vn(y)∈G

wn(y) exp(Snϕ(y))

}
− P (f, ϕ).

(1.7)

By applying the general theory of large deviations, particularly the contraction principle (see
Theorem 7.1), we derive the following level-1 large deviation principles from Theorem 1.3.

Corollary 1.6. Let ψ : S2 → R be a continuous function, and let ψ̂ : P(S2) → R be defined by ψ̂(µ) :=∫
ψ dµ. Under the assumptions of Theorem 1.3, each of the sequences

{
ψ̂∗(Σn)

}
n∈N,

{
ψ̂∗(Ωn)

}
n∈N,

and
{
ψ̂∗(Ωn(xn)

}
n∈N satisfies a large deviation principle in R with the rate function J : R → [0,+∞]

defined by

(1.8) J(α) := inf

{
Iϕ(µ) : µ ∈ P(S2),

∫
ψ dµ = α

}
for α ∈ R.

Furthermore, if cψ < dψ, where cψ := min
{∫
ψ dν : ν ∈ M(S2, f)

}
and dψ := max

{∫
ψ dν : ν ∈

M(S2, f)
}

, then for each interval K ⊆ R intersecting (cψ, dψ),

− inf
α∈K

J(α) = lim
n→+∞

1

n
logµϕ

({
x ∈ S2 :

1

n
Snψ(x) ∈ K

})
= lim

n→+∞

1

n
log

(∑
p∈Pern(f), 1

n
Snψ(p)∈K wn(p) exp(Snϕ(p))∑

p′∈Pern(f)wn(p
′) exp(Snϕ(p′))

)

= lim
n→+∞

1

n
log

(∑
y∈f−n(xn), 1

n
Snψ(y)∈K wn(y) exp(Snϕ(y))∑

y′∈f−n(xn)wn(y
′) exp(Snϕ(y′))

)
.

(1.9)

In addition, for all α ∈ R,

(1.10) J(α) ⩽ J̃(α) := inf

{
P (f, ϕ)− hµ(f)−

∫
ϕ dµ : µ ∈ M(S2, f),

∫
ψ dµ = α

}
,

and J(α) = J̃(α) for each α ∈ (cψ, dψ) if ψ : S2 → R is Hölder continuous with respect to the visual
metric d.

Remark. When the function ψ is Hölder continuous, the level-1 rate function J̃ defined in (1.10)
is close related to multifractal analysis, which studies level sets of the form Kψ

α := {x ∈ X :

limn→+∞
1
n

∑n−1
i=0 ψ(f

i(x)) = α}. Each Kψ
α is f -invariant, and the entropy spectrum of Birkhoff

averages, i.e., the function Hψ : [cψ, dψ] → [0,+∞) defined by Hψ(α) = htop
(
Kψ
α

)
(see Bowen [34]

and Pesin and Pitskel [137] for the precise definition), is described by the family of equilibrium states
{µtψ}t∈R, in the sense that η : t 7→

∫
ψ dµtψ is a homeomorphism from R onto (cψ, dψ), and for each

α ∈ (cψ, dψ),

Hψ(α) = hµη−1(α)ψ
(f) = sup

{
hµ(f) : µ ∈ M(S2, f),

∫
ψ dµ = α

}
.

The following equidistribution results follow from the corresponding level-2 large deviation prin-
ciples and the uniqueness of the minimizer of the rate function.

Theorem 1.7. Let f : S2 → S2 be an expanding Thurston map and d be a visual metric on S2 for
f . Let ϕ be a real-valued Hölder continuous function on S2 with respect to the metric d. Let µϕ be



ENTROPY DENSITY AND LARGE DEVIATION PRINCIPLES 7

the unique equilibrium state for f and ϕ. Fix an arbitrary sequence {wn}n∈N of real-valued functions
on S2 satisfying wn(x) ∈

[
1, degfn(x)

]
for each n ∈ N and each x ∈ S2. For each n ∈ N, denote

Snϕ(x) :=
∑n−1

i=0 ϕ(f
i(x)) for each x ∈ S2, and consider the following Borel probability measures on

S2.
Periodic points. With Pern(f) := {p ∈ S2 : fn(p) = p}, put

µn :=
∑

p∈Pern(f)

wn(p) exp(Snϕ(p))∑
p′∈Pern(f)wn(p

′) exp(Snϕ(p′))

1

n

n−1∑
i=0

δf i(p).

Iterated preimages. Given a sequence {xj}j∈N of points in S2, put

νn :=
∑

y∈f−n(xn)

wn(y) exp(Snϕ(y))∑
z∈f−n(xn)wn(z) exp(Snϕ(z))

1

n

n−1∑
i=0

δf i(y).

Then each of the sequences {µn}n∈N and {νn}n∈N converges to µϕ in the weak∗-topology.

See Subsection 7.7 for the proof of Theorem 1.7.

Remark 1.8. Since Snϕ(f i(p)) = Snϕ(p) for each i ∈ N if p ∈ Pern(f), we get

µn =
∑

p∈Pern(f)

Snwn(p)
n exp(Snϕ(p))∑

p′∈Pern(f)wn(p
′) exp(Snϕ(p′))

δp

for each n ∈ N. In particular, when wn(·) ≡ 1, we have

µn =
∑

p∈Pern(f)

exp(Snϕ(p))∑
p′∈Pern(f) exp(Snϕ(p

′))
δp;

when wn(·) ≡ degfn(·), since degfn(f
i(p)) = degfn(p) for each i ∈ N if p ∈ Pern(f), we have

µn =
∑

p∈Pern(f)

degfn(p) exp(Snϕ(p))∑
p′∈Pern(f) degfn(p

′) exp(Snϕ(p′))
δp.

We remark that the novelty of Theorem 1.3, Corollary 1.5, and Theorem 1.7, which generalize
the corresponding results in [Li15], lies in their application to all expanding Thurston maps, in-
cluding those with periodic critical points. Additionally, Corollary 1.6 partially extends [DPTUZ21,
Theorem 1.2 (5)].

1.2. Strategy and organization. We now discuss the strategies of proofs of our main results and
describe the organization of the paper.

To prove Theorem 1.1, by [Li15, Corollary 1.3], it suffices to study expanding Thurston maps with
periodic critical points and show that their entropy maps are not upper semi-continuous. The main
point here is to find a sequence of invariant measures that converges in the weak∗-topology and has
an entropy drop at the limit. Our strategy is to construct a suitable sequence of subsystems and
then apply the main results in [LSZ25, LS24] (see for example, Theorem 3.25) to verify that the
sequence of measures of maximal entropy associated with the sequence of subsystems satisfies our
desired properties. The construction of such a sequence of subsystems is based on the key observation
that the local degree at a periodic critical point increases exponentially under iteration. Hence we
can find subsystems around periodic critical points such that entropies of the associated measures of
maximal entropy have a uniform positive lower bound.

The main idea behind the proof of Theorem 1.2 is to find an ergodic measure that is close to
a given invariant measure in terms of both topology and entropy. To achieve this, we construct
a suitable subsystem and use the corresponding measure of maximal entropy to approximate the
given invariant measure. The construction of the subsystem poses the main difficulty. Our strategy
involves using pairs (as described in Subsection 3.2) instead of tiles to build a strongly primitive
subsystem. While the set of pairs is not a generator (unlike the set of tiles, as shown in Lemma 6.3),
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we first approximate ergodic measures with a finite collection of tiles in a specific sense (Lemma 6.2).
We then construct pairs from these tiles. Furthermore, to obtain a primitive subsystem, we add one
suitable pair contained in the interior of the corresponding 0-tile for each color. The existence of
such pairs is guaranteed by Lemma 6.4. Finally, with these preparations we are able to prove the
entropy density of ergodic measures.

The proof of Theorem 1.3 is more involved and we divide the proof into four parts: the uniqueness
of the minimizer, characterizations of topological pressures, the large deviation lower bound, and
the large deviation upper bound. Here the characterizations of topological pressures are used in the
proof of large deviation lower and upper bounds, and the uniqueness of the minimizer is used to
prove the convergence of distributions and equidistribution results, which is necessary since in our
setting the entropy map may not be upper semi-continuous. It should be noted that one cannot
derive the uniqueness of the minimizer directly from the uniqueness of the equilibrium states (recall
Remark 1.4).

To prove the uniqueness of the minimizer, we use a semi-conjugacy of an expanding Thurston map
to a shift map, and show that the uniqueness of the minimizer follows from ergodic properties of the
shift map and the uniqueness of the equilibrium state. Here a key property of such a semi-conjugacy
is that even in the presence of periodic critical points, the entropy at the equilibrium state does not
drop under the projection from the symbolic space (see Proposition 7.3 (iii)). The existence and
properties of such a semi-conjugacy are proved in [DPTUZ21].

The characterization of topological pressures in terms of periodic points for expanding Thurston
maps has been established in [Li15, Propositions 6.8] (see Theorem 7.7), while for iterated preimages
such characterization was only obtained for expanding Thurston maps without periodic critical points
(compare Theorem 7.8 with Theorem 7.7). By carefully analyzing the combinatorics of critical
points, we establish the characterization of topological pressures in terms of iterated preimages for
all expanding Thurston maps (see Theorem 7.9).

In the proof of large deviation lower and upper bounds we take an indirect approach. We first
consider an expanding Thurston map that has an invariant Jordan curve containing the postcritical
set. In such situations the associated cell decompositions have nice compatibility properties, enabling
the application of the results in the ergodic theory of subsystems established in [LSZ25, LS24].
However, such an invariant Jordan curve may not exist (see for example, [BM17, Example 15.11]).
Our strategy is to first establish large deviation bounds for sufficiently high iterates of an expanding
Thurston map, where such an invariant Jordan curve does exist (see Lemma 3.7), and then prove for
the original expanding Thurston map.

An important property for the proof of the large deviation lower bound for all open sets is en-
tropy approachability of ergodic measures (as defined in Definition 7.11), which guarantees that any
invariant measure can be approximated by an ergodic measure with entropy sufficiently large. This
property and is weaker than the entropy density of ergodic measures and allows for the simplifica-
tion of the proof of the lower bound to the case where the measure being considered is ergodic (see
also [EKW94, FO88, You90, Tak19]). Then we obtain estimates for ergodic measures by using the
approximations (Lemma 6.2) in the proof of the entropy density established in Section 6.

The main idea for the large deviation upper bound is to construct measures whose measure-
theoretic pressures provide desired upper bounds for the deviations. Our strategy is to construct
certain strongly primitive subsystems (see Definition 3.20) and apply the results in [LSZ25, LS24]
to produce such measures (see Proposition 7.19). Similar strategies are used in one-dimensional
real dynamics [CRLT19] and countable Markov shift [Tak19]. Constructions and estimates for the
upper bound are much harder than those for the lower bound and are necessarily involved due to
the presence of critical points and the lack of upper semi-continuity of entropy.

Finally, to prove Theorem 1.7, we use the property that the equilibrium state is the unique mini-
mizer of the rate function and then apply the results from large deviation principles.

We now describe the structure of this paper.
In Section 2, we fix some notation that will be used throughout the paper. In Section 3, we first

review some notions from ergodic theory and dynamical systems and go over some key concepts
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and results on Thurston maps. Then we summarize some concepts and results on subsystems of
expanding Thurston maps. In Section 4, we state the assumptions regarding some of the objects in
this paper, which we will repeatedly refer to later as the Assumptions in Section 4.

In Section 5, we investigate the upper semi-continuity of the entropy map of an expanding Thurston
map and prove Theorem 1.1. In Section 6, we show that ergodic measures are entropy-dense for
expanding Thurston maps and prove Theorem 1.2.

Section 7 is devoted to the study of large deviation principles and equidistribution results. In
Subsection 7.1, we give a brief review of large deviation principles. In Subsection 7.2, we show that
the equilibrium state is the unique minimizer of the rate function. In Subsection 7.3, we establish
characterizations of the topological pressure in terms of periodic points and iterated preimages. In
Subsections 7.4 and 7.5, we prove the large deviation lower bound for all open sets and upper bound
for all closed sets. In Subsection 7.6, by combining the previous results together, we finish the proof
of Theorem 1.3 and its two corollaries. In Subsection 7.7, we show that periodic points and iterated
preimages are equidistributed with respect to the unique equilibrium state, establishing Theorem 1.7.
Acknowledgments. The first-named author wants to thank Peter Haïssinky and Juan Rivera-
Letelier for discussions on the upper semi-continuity property of the entropy map. Z. Li and
X. Shi were partially supported by NSFC Nos. 12101017, 12090010, 12090015, 12471083, and BJNSF
No. 1214021.

2. Notation

Let C be the complex plane and Ĉ be the Riemann sphere. Let S2 denote an oriented topological
2-sphere. We use N to denote the set of integers greater than or equal to 1 and write N0 := {0} ∪N.
For x ∈ R, we define ⌊x⌋ as the greatest integer ⩽ x, and ⌈x⌉ the smallest integer ⩾ x. The cardinality
of a set A is denoted by card(A). The symmetric difference of two subsets A and B of a set X is
defined as

A△B := (A \B) ∪ (B \A).
Let g : X → Y be a map between two sets X and Y . We denote the restriction of g to a subset Z

of X by g|Z .
Consider a map f : X → X on a set X. The inverse map of f is denoted by f−1. We write fn for

the n-th iterate of f , and f−n := (fn)−1, for n ∈ N. We set f0 := idX , the identity map on X. For
a real-valued function φ : X → R, we write

Snφ(x) = Sfnφ(x) :=

n−1∑
j=0

φ
(
f j(x)

)
for x ∈ X and n ∈ N0. We omit the superscript f when the map f is clear from the context. Note
that when n = 0, by definition we always have S0φ = 0.

Let (X, d) be a metric space. For subsets A, B ∈ X, we set d(A,B) := inf{d(x, y) : x ∈ A, y ∈ B}.
For each subset Y ⊆ X, we denote the diameter of Y by diamd(Y ) := sup{d(x, y) : x, y ∈ Y }, the
interior of Y by int(Y ), and the characteristic function of Y by 1Y , which maps each x ∈ Y to 1 ∈ R
and vanishes otherwise. For each r > 0 and each x ∈ X, we denote the open (resp. closed) ball of
radius r centered at x by Bd(x, r) (resp. Bd(x, r)). We often omit the metric d in the subscript when
it is clear from the context.

For a compact metrizable topological space X, we denote by C(X) (resp. B(X)) the space of
continuous (resp. bounded Borel) functions from X to R, by M(X) the set of finite signed Borel
measures, and P(X) the set of Borel probability measures on X. For µ ∈ M(X), we denote by
suppµ the support of µ (the smallest closed set A ⊆ X such that |µ|(X \ A) = 0). For a point
x ∈ X, we denote by δx the Dirac measure supported on {x}. If we do not specify otherwise, we
equip C(X) with the uniform norm ∥·∥C(X) := ∥·∥∞, and equip M(X) and P(X) with the weak∗

topology. According to the Riesz representation theorem (see for example, [Fol99, Theorems 7.17
and 7.8]), we identify the dual of C(X) with the space M(X).
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The space of real-valued Hölder continuous functions with an exponent β ∈ (0, 1] on a compact
metric space (X, d) is denoted as C0,β(X, d). For each ϕ ∈ C0,β(X, d),

|ϕ|β := sup

{
|ϕ(x)− ϕ(y)|
d(x, y)β

: x, y ∈ X, x ̸= y

}
,

and the Hölder norm is defined as ∥ϕ∥C0,β := |ϕ|β + ∥ϕ∥C(X).

3. Preliminaries

3.1. Thermodynamic formalism. We first review some basic concepts from ergodic theory and
dynamical systems. For more detailed studies of these concepts, we refer the reader to [Wal82,
Chapter 9] and [KH95, Chapter 20].

Let (X, d) be a compact metric space and g : X → X a continuous map. Given n ∈ N,

dng (x, y) := max
{
d
(
gk(x), gk(y)

)
: k ∈ {0, . . . , n− 1}

}
, for x, y ∈ X,

defines a metric on X. A set F ⊆ X is (n, ϵ)-separated (with respect to g), for some n ∈ N and ϵ > 0,
if for each pair of distinct points x, y ∈ F , we have dng (x, y) ⩾ ϵ.

For each real-valued continuous function ψ ∈ C(X), the following two limits exist and are equal
(see for example, [KH95, Subsection 20.2]), which we denote by P (g, ψ):

P (g, ψ) := lim
ϵ→0+

lim sup
n→+∞

1

n
logNd(g, ψ, ε, n) = lim

ϵ→0+
lim inf
n→+∞

1

n
logNd(g, ψ, ε, n),(3.1)

where Nd(g, ψ, ε, n) := sup
{∑

x∈E exp
(
Snψ(x)

)
: E ⊆ X is (n, ε)-separated with respect to g

}
. We

call P (g, ψ) the topological pressure of g with respect to the potential ψ. In particular, when ψ = 0,
the quantity htop(g) := P (g, 0) is called the topological entropy of g. Note that P (g, ψ) is independent
of d as long as the topology on X defined by d remains the same (see for example, [KH95, Subsec-
tion 20.2]). Moreover, the topological pressure is well-behaved under iteration. Indeed, if n ∈ N,
then P (gn, Snψ) = nP (g, ψ) (see for example, [Wal82, Theorem 9.8 (i)]).

We denote by B the σ-algebra of all Borel sets on X. A measure on X is understood to be a Borel
measure, i.e., one defined on B. We call a measure µ on X g-invariant if

µ
(
g−1(A)

)
= µ(A)

for all A ∈ B. We denote by M(X, g) the set of all g-invariant Borel probability measures on X.
Let µ ∈ M(X, g). Then we say that g is ergodic for µ (or µ is ergodic for g) if for each set A ∈ B

with g−1(A) = A we have µ(A) = 0 or µ(A) = 1. We denote by Merg(X, g) the set of all g-invariant
ergodic measures on X.

Let µ ∈ M(X, g). A measurable partition ξ for (X,µ) is a countable collection ξ = {Ai : i ∈ I} of
sets in B such that µ(Ai ∩Aj) = 0 for each pair of i, j ∈ I with i ̸= j, and

µ
(
X \

∪
i∈I

Ai

)
= 0.

Here I is a countable (i.e., finite or countably infinite) index set. The measurable partition ξ is finite
if the index set J is a finite set.

Two measurable partitions ξ and η for (X,µ) are called equivalent if there exists a bijection between
the sets of positive measure in ξ and the sets of positive measure in η such that corresponding sets
have a symmetric difference of µ-measure zero. Roughly speaking, this means that the partitions are
the same up to sets of measure zero.

Let ξ = {Aj : j ∈ J} and η = {Bk : k ∈ K} be measurable partitions for (X,µ). We say ξ is a
refinement of η if for each Aj ∈ ξ, there exists Bk ∈ η such that Aj ⊆ Bk. The common refinement
(or join) ξ ∨ η of ξ and η defined as

ξ ∨ η := {Aj ∩Bk : j ∈ J, k ∈ K}
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is also a measurable partition. Put g−1(ξ) :=
{
g−1(Aj) : j ∈ J

}
, and for each n ∈ N define

ξng :=
n−1∨
j=0

g−j(ξ) = ξ ∨ g−1(ξ) ∨ · · · ∨ g−(n−1)(ξ).

Let ξ be a finite measurable partition for (g, µ) and A be the smallest σ-algebra containing all sets
in the partitions ξng , n ∈ N. We call ξ a generator for (g, µ) if for each Borel set B ∈ B there exists
a set A ∈ A such that µ(A△B) = 0. Note that if for every set B ∈ B and every ε > 0, there exists
n ∈ N and a union A of sets in ξng with µ(A△B) < ε, then ξ is a generator for (g, µ).

Let ξ = {Aj : j ∈ J} be a measurable partition of X and µ ∈ M(X, g) be a g-invariant Borel
probability measure on X. The entropy of ξ is Hµ(ξ) := −

∑
j∈J µ(Aj) log

(
µ(Aj)

)
∈ [0,+∞], where

0 log 0 is defined to be zero. One can show that (see for example, [Wal82, Chapter 4]) if Hµ(ξ) < +∞,
then the following limit exists:

hµ(g, ξ) := lim
n→+∞

1

n
Hµ(ξ

n
g ) ∈ [0,+∞).

The quantity hµ(g, ξ) is called the measure-theoretic entropy of g relative to ξ. The measure-theoretic
entropy of g for µ is defined as

hµ(g) := sup{hµ(g, ξ) : ξ is a measurable partition of X with Hµ(ξ) < +∞}.

If µ ∈ M(X, g) and n ∈ N, then (see for example, [KH95, Proposition 4.3.16 (4)])

(3.2) hµ(g
n) = nhµ(g).

If t ∈ [0, 1] and ν ∈ M(X, g) is another measure, then (see for example, [Wal82, Theorem 8.1])

(3.3) htµ+(1−t)ν(g) = thµ(g) + (1− t)hν(g).

For each real-valued continuous function ψ ∈ C(X), the measure-theoretic pressure Pµ(g, ψ) of g
for the measure µ ∈ M(X, g) and the potential ψ is

Pµ(g, ψ) := hµ(g) +

∫
ψ dµ.

The topological pressure is related to the measure-theoretic pressure by the so-called Variational
Principle. It states that (see for example, [KH95, Theorem 20.2.4])

(3.4) P (g, ψ) = sup{Pµ(g, ψ) : µ ∈ M(X, g)}

for each ψ ∈ C(X). In particular, when ψ is the constant function 0,

(3.5) htop(g) = sup{hµ(g) : µ ∈ M(X, g)}.

A measure µ that attains the supremum in (3.4) is called an equilibrium state for the map g and the
potential ψ. A measure µ that attains the supremum in (3.5) is called a measure of maximal entropy
of g.

Let X̃ be another compact metric space. If µ is a measure on X and the map π : X → X̃ is
continuous, then the push-forward π∗µ of µ by π is the measure given by π∗µ(A) := µ

(
π−1(A)

)
for

each Borel set A ⊆ X̃. Note that if X̃ = X, then µ is π-invariant if and only if π∗µ = µ.
Suppose g̃ : X̃ → X̃ is a continuous map, µ ∈ M(X, g), and µ̃ ∈ M(X̃, g̃). Then the dynamical

system (X̃, g̃, µ̃) is called a factor of (X, g, µ) if there exists a continuous and surjective map π : X →
X̃ such that π∗µ = µ̃ and g̃ ◦ π = π ◦ g. In this case, hµ̃(g̃) ⩽ hµ(g) (see for example, [KH95,
Proposition 4.3.16 (1)]).
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3.2. Thurston maps. In this subsection, we go over some key concepts and results on Thurston
maps, and expanding Thurston maps in particular. For a more thorough treatment of the subject,
we refer to [BM17, Li17, LSZ25].

Let S2 denote an oriented topological 2-sphere and f : S2 → S2 be a branched covering map. We
denote by degf (x) the local degree of f at x ∈ S2. The degree of f is deg f =

∑
x∈f−1(y) degf (x) for

y ∈ S2 and is independent of y.
A point x ∈ S2 is a critical point of f if degf (x) ⩾ 2. The set of critical points of f is denoted by

crit f . A point y ∈ S2 is a postcritical point of f if y = fn(x) for some x ∈ crit f and n ∈ N. The set
of postcritical points of f is denoted by post f .

Definition 3.1 (Thurston maps). A Thurston map is a branched covering map f : S2 → S2 on S2

with deg f ⩾ 2 and card(post f) < +∞.

We now recall the notation for cell decompositions of S2 used in [BM17] and [Li17]. A cell of
dimension n in S2, n ∈ {1, 2}, is a subset c ⊆ S2 that is homeomorphic to the closed unit ball Bn in
Rn, where Bn is the open unit ball in Rn. We define the boundary of c, denoted by ∂c, to be the set
of points corresponding to ∂Bn under such a homeomorphism between c and Bn. The interior of c is
defined to be inte(c) = c \ ∂c. For each point x ∈ S2, the set {x} is considered as a cell of dimension
0 in S2. For a cell c of dimension 0, we adopt the convention that ∂c = ∅ and inte(c) = c.

Let f : S2 → S2 be a Thurston map, and C ⊆ S2 be a Jordan curve containing post f . Then the
pair f and C induces natural cell decompositions Dn(f, C) of S2, for each n ∈ N0, in the following
way:

By the Jordan curve theorem, the set S2 \ C has two connected components. We call the closure
of one of them the white 0-tile for (f, C), denoted by X0

w, and the closure of the other one the black
0-tile for (f, C), denoted be X0

b . The set of 0-tiles is X0(f, C) :=
{
X0

b , X
0
w

}
. The set of 0-vertices is

V0(f, C) := post f . We set V
0
(f, C) :=

{
{x} : x ∈ V0(f, C)

}
. The set of 0-edges E0(f, C) is the set

of the closures of the connected components of C \ post f . Then we get a cell decomposition

D0(f, C) := X0(f, C) ∪E0(f, C) ∪V
0
(f, C)

of S2 consisting of cells of level 0, or 0-cells.
We can recursively define the unique cell decomposition Dn(f, C), n ∈ N, consisting of n-cells such

that f is cellular for (Dn+1(f, C),Dn(f, C)). We refer to [BM17, Lemma 5.12] for more details. We
denote by Xn(f, C) the set of n-cells of dimension 2, called n-tiles; by En(f, C) the set of n-cells of
dimension 1, called n-edges; by V

n
(f, C) the set of n-cells of dimension 0; and by Vn(f, C) the set

{x : {x} ∈ V
n
(f, C)}, called the set of n-vertices. The k-skeleton, for k ∈ {0, 1}, of Dn(f, C) is the

union of all n-cells of dimension k in this cell decomposition.
The following result proved in [BM17, Proposition 5.16] summarizes some properties of the cell

decompositions Dn(f, C) defined above.

Proposition 3.2 (M. Bonk & D. Meyer [BM17]). Let k, n ∈ N0, f : S2 → S2 be a Thurston map,
C ⊆ S2 be a Jordan curve with post f ⊆ C, and m := card(post f).

(i) The map fk is cellular for (Dn+k(f, C),Dn(f, C)). In particular, if c is any (n+ k)-cell, then
fk(c) is an n-cell, and fk|c is a homeomorphism of c onto fk(c).

(ii) The 1-skeleton of Dn(f, C) is equal to f−n(C). The 0-skeleton of Dn(f, C) is the set Vn(f, C) =
f−n(post f), and we have Vn(f, C) ⊆ Vn+k(f, C).

(iii) Every n-tile is an m-gon, i.e., the number of n-edges and the number of n-vertices contained
in its boundary are equal to m.

(iv) Let F := fk be an iterate of f with k ∈ N. Then Dn(F, C) = Dnk(f, C).

Remark 3.3. Note that for each n-edge en ∈ En(f, C), n ∈ N0, there exist exactly two n-tiles in
Xn(f, C) containing en.
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For n ∈ N0, we define the set of black n-tiles as
Xn

b (f, C) :=
{
X ∈ Xn(f, C) : fn(X) = X0

b

}
,

and the set of white n-tiles as
Xn

w(f, C) :=
{
X ∈ Xn(f, C) : fn(X) = X0

w

}
.

From now on, if the map f and the Jordan curve C are clear from the context, we will sometimes
omit (f, C) in the notation above.

If we fix the cell decomposition Dn(f, C), n ∈ N0, we can define for each v ∈ Vn the n-flower of v
as
(3.6) Wn(v) :=

∪{
inte(c) : c ∈ Dn(f, C), v ∈ c

}
.

Note that flowers are open (in the standard topology on S2). Let Wn
(v) be the closure of Wn(v).

Remark 3.4. For each n ∈ N0 and each v ∈ Vn, we have
W

n
(v) = X1 ∪X2 ∪ · · · ∪Xm,

where m := 2 degfn(v), and X1, X2, . . . Xm are all the n-tiles that contain v as a vertex (see [BM17,
Lemma 5.28]). Moreover, each flower is mapped under f to another flower in such a way that is
similar to the map z 7→ zk on the complex plane. More precisely, for each n ∈ N0 and each v ∈ Vn+1,
there exist orientation preserving homeomorphisms φ : Wn+1(v) → D and η : Wn(f(v)) → D such
that D is the unit disk on C, φ(v) = 0, η(f(v)) = 0, and

(η ◦ f ◦ φ−1)(z) = zk

for all z ∈ D, where k := degf (v). Let Wn+1
(v) = X1∪X2∪· · ·∪Xm and Wn

(f(v)) = X ′
1∪X ′

2∪· · ·∪
X ′
m′ , where X1, X2, . . . Xm are all the (n+1)-tiles that contain v as a vertex, listed counterclockwise,

and X ′
1, X

′
2, . . . X

′
m′ are all the n-tiles that contain f(v) as a vertex, listed counterclockwise, and

f(X1) = X ′
1. Then m = m′k, and f(Xi) = X ′

j if i ≡ j (mod k), where k = degf (v) (see Case 3 of the
proof of [BM17, Lemma 5.24] for more details). In particular, Wn(v) is simply connected. Moreover,
it follows from Proposition 3.2 that the map f preserves the structure of flowers, or more precisely,
(3.7) f(Wn(x)) =Wn−1(f(x))

for each n ∈ N and each x ∈ Vn(f, C).
We denote, for each x ∈ S2 and each n ∈ Z, the n-bouquet of x

(3.8) Un(x) :=
∪{

Y n ∈ Xn : there exists Xn ∈ Xn with x ∈ Xn, Xn ∩ Y n ̸= ∅
}

if n ⩾ 0, and set Un(x) := S2 otherwise.
We can now define expanding Thurston maps.

Definition 3.5 (Expansion). A Thurston map f : S2 → S2 is called expanding if there exists a metric
d on S2 that induces the standard topology on S2 and a Jordan curve C ⊆ S2 containing post f such
that

lim
n→+∞

max{diamd(X) : X ∈ Xn(f, C)} = 0.

It is clear from Proposition 3.2 (iv) and Definition 3.5 that if f is an expanding Thurston map,
so is fn for each n ∈ N. We observe that being expanding is a topological property of a Thurston
map and independent of the choice of the metric d that generates the standard topology on S2. By
Lemma 6.2 in [BM17], it is also independent of the choice of the Jordan curve C containing post f .

For an expanding Thurston map f , we can fix a particular metric d on S2 called a visual metric for
f . For the existence and properties of such metrics, see [BM17, Chapter 8]. For a visual metric d for
f , there exists a unique constant Λ > 1 called the expansion factor of d (see [BM17, Chapter 8] for
more details). One major advantage of a visual metric d is that in (S2, d) we have good quantitative
control over the sizes of the cells in the cell decompositions. We record [BM17, Proposition 8.4] here,
which characterizes visual metrics based on this quantitative control.
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Proposition 3.6. Let f : S2 → S2 be an expanding Thurston map and d be a metric on S2. Then
d is a visual metric for f with expansion factor Λ > 1 if and only if there exists a constant C ⩾ 1
such that the following two conditions hold for all n ∈ N0:

(i) d(σ, τ) ⩾ C−1Λ−n whenever σ and τ are disjoint n-cells.
(ii) C−1Λ−n ⩽ diamd(τ) ⩽ CΛ−n for all n-edges and all n-tiles τ .

Here cells are defined in terms of some Jordan curve C ⊆ S2 with post f ⊆ C, and the constant C ⩾ 1
is independent of the cells and their level n.

A Jordan curve C ⊆ S2 is f -invariant if f(C) ⊆ C. If C is f -invariant with post f ⊆ C, then the cell
decompositions Dn(f, C) have nice compatibility properties. In particular, Dn+k(f, C) is a refinement
of Dn(f, C), whenever n, k ∈ N0. According to Example 15.11 in [BM17], such f -invariant Jordan
curves containing post f need not exist. However, M. Bonk and D. Meyer [BM17, Theorem 15.1]
proved that there exists an fn-invariant Jordan curve C containing post f for each sufficiently large
n depending on f . We record it below for the convenience of the reader.

Lemma 3.7 (M. Bonk & D. Meyer [BM17]). Let f : S2 → S2 be an expanding Thurston map, and
C̃ ⊆ S2 be a Jordan curve with post f ⊆ C̃. Then there exists an integer N(f, C̃) ∈ N such that for
each n ⩾ N(f, C̃) there exists an fn-invariant Jordan curve C isotopic to C̃ rel. post f .

For the convenience of the reader, we record Proposition 12.5 (ii) of [BM17] here.

Proposition 3.8 (M. Bonk & D. Meyer [BM17]). Let k, n ∈ N0, f : S2 → S2 be a Thurston map,
and C ⊆ S2 be an f -invariant Jordan curve with post f ⊆ C. Then every (n + k)-tile Xn+k is
contained in a unique k-tile Xk.

The following distortion lemma follows immediately from [Li18, Lemma 5.1].

Lemma 3.9. Let f : S2 → S2 be an expanding Thurston map, and C ⊆ S2 be a Jordan curve that
satisfies post f ⊆ C and fnC(C) ⊆ C for some nC ∈ N. Let d be a visual metric on S2 for f with
expansion factor Λ > 1. Let ϕ ∈ C0,β(S2, d) be a real-valued Hölder continuous function with an
exponent β ∈ (0, 1]. Then there exists a constant C1 ⩾ 0 depending only on f , C, d, ϕ, and β such
that for all n ∈ N0, Xn ∈ Xn(f, C), and x, y ∈ Xn,

(3.9) |Snϕ(x)− Snϕ(y)| ⩽ C1d(f
n(x), fn(y))β ⩽ C1(diamd(S

2))β.

Quantitatively, we choose

(3.10) C1 := C0|ϕ|β
/(

1− Λ−β),
where C0 > 1 is a constant depending only on f , C, and d.

We summarize the existence, uniqueness, and some basic properties of equilibrium states for
expanding Thurston maps in the following theorem.

Theorem 3.10 (Z. Li [Li18]). Let f : S2 → S2 be an expanding Thurston map and d a visual
metric on S2 for f . Let ϕ ∈ C0,β(S2, d) be real-valued Hölder continuous functions with an exponent
β ∈ (0, 1]. Then the following statements are satisfied:

(i) There exists a unique equilibrium state µϕ for the map f and the potential ϕ.
(ii) If C ⊆ S2 is a Jordan curve containing post f with the property that fnC(C) ⊆ C for some

nC ∈ N, then µϕ
(∪+∞

i=0 f
−i(C)

)
= 0.

Theorem 3.10 (i) is part of [Li18, Theorem 1.1]. Theorem 3.10 (ii) was established in [Li18,
Proposition 7.1].

Actually, by [Li18, Theorem 5.16, Proposition 5.17], the equilibrium state µϕ is a Gibbs measure.
We explicitly formulate this result below for the convenience of the reader.
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Proposition 3.11 (Z. Li [Li18]). Let f : S2 → S2 be an expanding Thurston map and C ⊆ S2 be a
Jordan curve containing post f with the property that fnC(C) ⊆ C for some nC ∈ N. Let d be a visual
metric on S2 for f and ϕ ∈ C0,β(S2, d) be a real-valued Hölder continuous function with an exponent
β ∈ (0, 1]. Then the equilibrium state µϕ for f and ϕ is a Gibbs measure with respect to f , C, and
ϕ, with the constant Pµϕ = P (f, ϕ), i.e., there exists a constant Cµϕ ⩾ 1 such that for each n ∈ N0,
each n-tile Xn ∈ Xn(f, C), and each x ∈ Xn, we have

(3.11) 1

Cµϕ
⩽ µϕ(X

n)

exp(Snϕ(x)− nP (f, ϕ))
⩽ Cµϕ .

We next introduce pair structures associated with tile structures induced by an expanding Thurston
map. We refer the reader to [LSZ25, Subsection 7.2] for details.
Definition 3.12 (Pair structures). Let f : S2 → S2 be an expanding Thurston map with a Jordan
curve C ⊆ S2 satisfying post f ⊆ C. Fix an arbitrary 0-edge e0 ∈ E0(f, C). For each n ∈ N, we can
pair a white n-tile Xn

w ∈ Xn
w and a black n-tile Xn

b ∈ Xn
b whose intersection Xn

w ∩ Xn
b contains an

n-edge contained in f−n(e0). We define the set of n-pairs (with respect to f , C, and e0), denoted by
Pn(f, C, e0), to be the collection of the union Xn

w ∪Xn
b of such pairs (called n-pairs), i.e.,

(3.12) Pn(f, C, e0) :=
{
Xn

w ∪Xn
b : Xn

w ∈ Xn
w, X

n
b ∈ Xn

b , X
n
w ∩Xn

b ∩ f−n
(
e0
)
∈ En(f, C)

}
.

From now on, if the map f , the Jordan curve C, and the 0-edge e0 are clear from the context, we
will sometimes omit (f, C, e0) in the notation above.

We record [LSZ25, Lemmas 7.6 and 7.9] in the following. Recall that Un(x) is defined in (3.8).
Lemma 3.13 (Z. Li, X. Shi, Y. Zhang [LSZ25]). Let f : S2 → S2 be an expanding Thurston map
with a Jordan curve C ⊆ S2 satisfying post f ⊆ C. Fix an arbitrary 0-edge e0 ∈ E0(f, C). Then for
each n ∈ N and any two distinct n-pairs Pn, P̃n ∈ Pn(f, C, e0), their interiors are disjoint.
Lemma 3.14 (Z. Li, X. Shi, Y. Zhang [LSZ25]). Let f : S2 → S2 be an expanding Thurston map
with a Jordan curve C ⊆ S2 satisfying post f ⊆ C. Let d be a visual metric on S2 for f . Fix an
arbitrary 0-edge e0 ∈ E0(f, C). We assume in addition that f(C) ⊆ C. Then there exists an integer
M ∈ N depending only on f , C, d, and e0 such that for each color c ∈ {b,w}, there exists an M -pair
PMc ∈ PM (f, C, e0) such that for each integer n ⩾M and each x ∈ PMc , we have Un(x) ⊆ inte

(
X0

c

)
.

3.3. Subsystems of expanding Thurston maps. In this subsection, we review some concepts
and results on subsystems of expanding Thurston maps. We refer the reader to [LSZ25, LS24] for
details.

We first introduce the definition of subsystems along with relevant concepts and notations. Addi-
tionally, we provide several examples to illustrate these ideas.
Definition 3.15. Let f : S2 → S2 be an expanding Thurston map with a Jordan curve C ⊆ S2

satisfying post f ⊆ C. We say that a map F : dom(F ) → S2 is a subsystem of f with respect to C if
dom(F ) =

∪
X for some non-empty subset X ⊆ X1(f, C) and F = f |dom(F ). We denote by Sub(f, C)

the set of all subsystems of f with respect to C. Define
Sub∗(f, C) := {F ∈ Sub(f, C) : dom(F ) ⊆ F (dom(F ))}.

Consider a subsystem F ∈ Sub(f, C). For each n ∈ N0, we define the set of n-tiles of F to be
(3.13) Xn(F, C) := {Xn ∈ Xn(f, C) : Xn ⊆ F−n(F (dom(F )))},
where we set F 0 := idS2 when n = 0. We call each Xn ∈ Xn(F, C) an n-tile of F . We define the tile
maximal invariant set associated with F with respect to C to be

(3.14) Ω(F, C) :=
∩
n∈N

(∪
Xn(F, C)

)
,

which is a compact subset of S2. Indeed, Ω(F, C) is forward invariant with respect to F , namely,
F (Ω(F, C)) ⊆ Ω(F, C) (see Proposition 3.17 (i)). We denote by FΩ the map F |Ω(F,C) : Ω(F, C) →
Ω(F, C).
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Let X0
b , X

0
w ∈ X0(f, C) be the black 0-tile and the white 0-tile, respectively. For each n ∈ N0, we

define the set of black n-tiles of F as

Xnb (F, C) :=
{
X ∈ Xn(F, C) : Fn(X) = X0

b

}
,

and the set of white n-tiles of F as

Xnw(F, C) :=
{
X ∈ Xn(F, C) : Fn(X) = X0

w

}
.

Moreover, for each n ∈ N0 and each pair of c, c′ ∈ {b,w} we define

Xncc′(F, C) :=
{
X ∈ Xnc (F, C) : X ⊆ X0

c′
}
.

In other words, for example, a tile X ∈ Xnbw(F, C) is a black n-tile of F contained in X0
w, i.e., an n-tile

of F that is contained in the white 0-tile X0
w as a set, and is mapped by Fn onto the black 0-tile X0

b .
By abuse of notation, we often omit (F, C) in the notations above when it is clear from the context.
We discuss two examples below and refer the reader to [LSZ25, Subsection 5.1] for more examples.

Example 3.16. Let f : S2 → S2 be an expanding Thurston map with a Jordan curve C ⊆ S2

satisfying post f ⊆ C. Consider F ∈ Sub(f, C).

(i) The map F : dom(F ) → S2 is represented by Figure 3.1. Here S2 is identified with a pillow
that is obtained by gluing two squares together along their boundaries. Moreover, each square
is subdivided into 3×3 subsquares, and dom (F ) is obtained from S2 by removing the interior
of the middle subsquare X1

w ∈ X1
w(f, C) and X1

b ∈ X1
b(f, C) of the respective squares. In this

case, Ω is a Sierpiński carpet. It consists of two copies of the standard square Sierpiński
carpet glued together along the boundaries of the squares.

F

dom(F ) S2

Figure 3.1. A Sierpiński carpet subsystem.

(ii) The map F : dom(F ) → S2 is represented by Figure 3.2. Here S2 is identified with a pillow
that is obtained by gluing two equilateral triangles together along their boundaries. Moreover,
each triangle is subdivided into 4 small equilateral triangles, and dom (F ) is obtained from
S2 by removing the interior of the middle small triangle X1

b ∈ X1
b(f, C) and X1

w ∈ X1
w(f, C)

of the respective triangle. In this case, Ω is a Sierpiński gasket. It consists of two copies of
the standard Sierpiński gasket glued together along the boundaries of the triangles.
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F
dom(F ) S2

Figure 3.2. A Sierpiński gasket subsystem.

We summarize some preliminary results for subsystems in the following proposition.

Proposition 3.17 (Z. Li, X. Shi, Y. Zhang [LSZ25]). Let f : S2 → S2 be an expanding Thurston
map with a Jordan curve C ⊆ S2 satisfying post f ⊆ C. Consider F ∈ Sub(f, C). Then the following
statements hold:

(i) The tile maximal invariant set Ω is forward invariant with respect to F , i.e., F (Ω) ⊆ Ω.
(ii) If f(C) ⊆ C, then Xmc (F, C) = Xmcb(F, C) ∪ Xmcw(F, C) for each m ∈ N0 and each c ∈ {b,w}.
(iii) If f(C) ⊆ C, then F−1(Ω \ C) ⊆ Ω \ C.

Proposition 3.17 (i) was proved in [LSZ25, Proposition 5.4 (iii)]. Proposition 3.17 (ii) and (iii) are
from [LSZ25, Proposition 5.5 (ii) and (iii)].

We introduce a 2 × 2 matrix called the tile matrix to describe tiles of a subsystem according to
their colors and locations.

Definition 3.18 (Tile matrices). Let f : S2 → S2 be an expanding Thurston map with a Jordan
curve C ⊆ S2 satisfying post f ⊆ C. Consider F ∈ Sub(f, C). We define the tile matrix of F with
respect to C as

(3.15) A = A(F, C) :=
[
Nww Nbw

Nwb Nbb

]
where

Ncc′ = Ncc′(A) := card
{
X ∈ X1

c (F, C) : X ⊆ X0
c′
}
= card

(
X1
cc′(F, C)

)
for each pair of colors c, c′ ∈ {b,w}. For example, Nbw is the number of black tiles in X1(F, C) that
are contained in the white 0-tile X0

w. Recall that X0
b , X

0
w ∈ X0(f, C) is the black 0-tile and the white

0-tile, respectively.

Remark 3.19. Note that the tile matrix A(F, C) of F with respect to C is completely determined
by the set X1(F, C). Thus for each integer n ∈ N0 and each set of n-tiles T ⊆ Xn(f, C), similarly, we
can define the tile matrix A(T) of T as

A(T) :=

[
Nww(T) Nbw(T)
Nwb(T) Nbb(T),

]
where Ncc′(T) := card

({
X ∈ T : X ∈ Xn

c (f, C), X ⊆ X0
c′
})

= card
(
Xncc′(F, C)

)
for each pair of

c, c′ ∈ {b,w}.

Definition 3.20 (Primitivity). Let f : S2 → S2 be an expanding Thurston map with a Jordan curve
C ⊆ S2 satisfying post f ⊆ C. Consider F ∈ Sub(f, C). We say that F is a primitive (resp. strongly
primitive) subsystem (of f with respect to C) if there exists an integer nF ∈ N such that for each
pair of c, c′ ∈ {b,w} and each integer n ⩾ nF , there exists Xn ∈ Xnc (F, C) satisfying Xn ⊆ X0

c′ (resp.
Xn ⊆ inte

(
X0

c′
)
).

Remark 3.21. By [Li18, Lemma 5.10], every expanding Thurston map f is a strongly primitive
subsystem of itself with respect to every Jordan curve C ⊆ S2 satisfying post f ⊆ C.
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We record [LSZ25, Lemmas 5.22] below, which shows that primitive subsystems have nice combi-
natorial and topological properties.
Lemma 3.22 (Z. Li, X. Shi, Y. Zhang [LSZ25]). Let f : S2 → S2 be an expanding Thurston map
with a Jordan curve C ⊆ S2 satisfying post f ⊆ C. Let F ∈ Sub(f, C) be primitive (resp. strongly
primitive). Let nF ∈ N be the constant from Definition 3.20, which depends only on F and C. Then
for each n ∈ N with n ⩾ nF , each m ∈ N0, each c ∈ {b,w}, and each m-tile Xm ∈ Xm(F, C), there
exists an (n+m)-tile Xn+m

c ∈ Xn+mc (F, C) such that Xn+m
c ⊆ Xm (resp. Xn+m

c ⊆ inte(Xm)).
We now review some concepts and results on the ergodic theory of subsystems of expanding

Thurston maps. We refer the reader to [LSZ25, Section 6] for more details and the proofs.
Definition 3.23 (Topological pressures for subsystems). Let f : S2 → S2 be an expanding Thurston
map with a Jordan curve C ⊆ S2 satisfying post f ⊆ C. Consider F ∈ Sub(f, C). For a real-valued
function φ : S2 → R, we denote

Zn(F,φ) :=
∑

Xn∈Xn(F,C)

exp
(
sup
{
SFn φ(x) : x ∈ Xn

})
for each n ∈ N. We define the topological pressure of F with respect to the potential φ by

(3.16) P (F,φ) := lim inf
n→+∞

1

n
log(Zn(F,φ)).

In particular, when φ is the constant function 0, the quantity htop(F ) := P (F, 0) is called the
topological entropy of F .
Remark. We note that the definition (3.16) differs from the classical definition in (3.1) presented
in Subsection 3.1, which applies to F |Ω and φ|Ω. Indeed, they coincide for a strongly primitive
subsystem and a Hölder continuous potential (see [LSZ25, Theorems 6.29 and 6.30]).

We record [LSZ25, Proposition 6.5] below, which shows that the topological entropy of F can in
fact be computed explicitly via tile matrices defined in Definition 3.18.
Proposition 3.24 (Z. Li, X. Shi, Y. Zhang [LSZ25]). Let f : S2 → S2 be an expanding Thurston map
with a Jordan curve C ⊆ S2 satisfying post f ⊆ C and f(C) ⊆ C. Consider a subsystem F ∈ Sub(f, C).
Let A be the tile matrix of F with respect to C. Then we have
(3.17) htop(F ) = log(ρ(A)),

where ρ(A) is the spectral radius of A.
Remark. The spectral radius ρ(A) can easily be computed from any matrix norm. If for an (m×m)-
matrix B = (bij) we set ∥B∥ :=

∑m
i,j=1 |bij | for example, then ρ(A) = limn→+∞(∥An∥)1/n.

We summarize the existence and some basic properties of equilibrium states for strongly primitive
subsystems in the following theorem, which is part of [LS24, Theorem 1.1]. Recall that F (Ω) ⊆ Ω
by Proposition 3.17 (i).
Theorem 3.25 (Z. Li & X. Shi [LS24]). Let f : S2 → S2 be an expanding Thurston map with a
Jordan curve C ⊆ S2 satisfying post f ⊆ C and f(C) ⊆ C. Let d be a visual metric on S2 for f , and ϕ
be a real-valued Hölder continuous function on S2 with respect to the metric d. Consider a strongly
primitive subsystem F ∈ Sub(f, C). Then there exists a unique equilibrium state µF,ϕ for F |Ω and
ϕ|Ω. Moreover, µF,ϕ is ergodic for F |Ω.

4. The Assumptions

We state below the hypotheses under which we will develop our theory in most parts of this paper.
We will selectively use some of the following assumptions in the remaining part of this paper.
The Assumptions.

(1) f : S2 → S2 is an expanding Thurston map.
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(2) C ⊆ S2 is a Jordan curve containing post f with the property that there exists an integer
nC ∈ N such that fnC(C) ⊆ C and fm(C) ̸⊆ C for each m ∈ {1, . . . , nC − 1}.

(3) F ∈ Sub(f, C) is a subsystem of f with respect to C.
(4) d is a visual metric on S2 for f with expansion factor Λ > 1.
(5) β ∈ (0, 1].
(6) ϕ ∈ C0,β(S2, d) is a real-valued Hölder continuous function with exponent β.
(7) µϕ is the unique equilibrium state for the map f and the potential ϕ.
(8) e0 ∈ E0(f, C) is a 0-edge.

Observe that by Lemma 3.7, for each f in (1), there exists at least one Jordan curve C that satisfies
(2). Since for a fixed f , the number nC is uniquely determined by C in (2), in this paper, we say that
a quantity depends on C even if it also depends on nC .

Recall that the expansion factor Λ of a visual metric d on S2 for f is uniquely determined by d
and f . We will say that a quantity depends on f and d if it depends on Λ.

In the discussion below, depending on the conditions we will need, we will sometimes say “Let f ,
C, d, ϕ satisfy the Assumptions.”, and sometimes say “Let f and C satisfy the Assumptions.”, etc.

5. Upper semi-continuity

In this section we show that the entropy map of an expanding Thurston map is upper semi-
continuous if and only if the map has no periodic critical points.

Definition 5.1. Let X be a compact metrizable topological space and T : X → X be a continuous
map. The entropy map of T is the map µ 7→ hµ(T ) which is defined on M(X,T ) and has values
in [0,+∞]. Here M(X,T ) is the set of all T -invariant Borel probability measures on X and is
equipped with the weak∗ topology. We say that the entropy map of T is upper semi-continuous if
lim supn→+∞ hµn(T ) ⩽ hµ(T ) holds for every sequence {µn}n∈N of Borel probability measures on X
that converges to µ ∈ M(X,T ) in the weak∗ topology.

The proof of the following lemma is straightforward, and we include it for the sake of completeness.

Lemma 5.2. Let X be a compact metrizable topological space and T : X → X be a continuous map.
Consider arbitrary n ∈ N and µ ∈ M(X,Tn). Define ν := 1

n

∑n−1
j=0 T

j
∗µ. Then ν ∈ M(X,T ) and

(5.1) h
T j∗µ

(Tn) = hµ(T
n) = hν(T

n) = nhν(T ) for each j ∈ {0, 1, . . . , n− 1}.

Moreover, if µ is ergodic for Tn, then ν is ergodic for T .

Proof. Fix arbitrary n ∈ N and µ ∈ M(X,Tn). Then T∗ν = ν ∈ M(X,T ) since Tn∗ µ = µ. By (3.2)
and (3.3), we have

(5.2) nhν(T ) = hν(T
n) =

1

n

n−1∑
j=0

h
T j∗µ

(Tn).

We now show that h
T j∗µ

(Tn) = hµ(T
n) for each j ∈ {0, . . . , n − 1}. Indeed, the measure T∗µ

is Tn-invariant and the triple (X,Tn, T∗µ) is a factor of (X,Tn, µ) by the map T . It follows that
hT∗µ(T

n) ⩽ hµ(T
n) (see Subsection 3.1). Iterating this and noting that Tn∗ µ = µ by Tn-invariance

of µ, we obtain
hµ(T

n) = hTn∗ µ(T
n) ⩽ hTn−1

∗ µ(T
n) ⩽ · · · ⩽ hT∗µ(T

n) ⩽ hµ(T
n).

Hence h
T j∗µ

(Tn) = hµ(T
n) for each j ∈ {0, . . . , n−1}. Combining this with (5.2), we establish (5.1).

Finally, we assume that µ is ergodic for Tn. Let A be a Borel subset of X satisfying T−1(A) = A.
Since T−n(A) = A and µ is ergodic for Tn, we have µ(A) ∈ {0, 1}. Then

ν(A) =
1

n

n−1∑
i=0

T j∗µ =
1

n

n−1∑
i=0

µ
(
T−i(A)

)
= µ(A) ∈ {0, 1}.
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This implies that ν is ergodic for T . □
The following proposition is a consequence of Lemma 5.2.

Proposition 5.3. Let X be a compact metrizable topological space and T : X → X be a continuous
map. Consider arbitrary n ∈ N. Then the entropy map of Tn is upper semi-continuous if and only
if the entropy map of T is upper semi-continuous.
Proof. Fix arbitrary n ∈ N.

Suppose that the entropy map of Tn is upper semi-continuous. Since M(X,T ) ⊆ M(X,Tn), it
follows immediately from (3.2) that the entropy map of T is also upper semi-continuous.

For the converse direction suppose that the entropy map of Tn is not upper semi-continuous.
Then there exists a Tn-invariant Borel probability measure µ0 ∈ M(X,Tn) and a sequence {µk}k∈N
of Tn-invariant Borel probability measures in M(X,Tn) such that {µk}k∈N converges to µ0 in the
weak∗ topology and satisfies
(5.3) lim sup

k→+∞
hµk(T

n) > hµ0(T
n).

We define ν0 := 1
n

∑n−1
j=0 T

j
∗µ0 and νk :=

1
n

∑n−1
j=0 T

j
∗µk for each k ∈ N. Then {νk}k∈N converges to

ν0 in the weak∗ topology. Indeed, for each φ ∈ C(X), since STnφ ∈ C(X) and {µk}k∈N converges to
µ0 in the weak∗ topology, we obtain∫

φdνk =
1

n

∫
STnφdµk −→

1

n

∫
STnφdµ0 =

∫
φdν0

as k → +∞.
Now we show that the entropy map of T is not upper semi-continuous at ν0. It follows immediately

from (5.3) and Lemma 5.2 that

lim sup
k→+∞

hνk(T ) =
1

n
lim sup
k→+∞

hµk(T
n) >

1

n
hµ0(T

n) = hν0(T ).

This completes the proof. □
By constructing suitable subsystems, we can prove the “only if” part in Theorem 1.1. We first

establish the following proposition and then prove the general cases (Theorem 5.5).
Proposition 5.4. Let f : S2 → S2 be an expanding Thurston map with a Jordan curve C ⊆ S2

satisfying post f ⊆ C and f(C) ⊆ C. Suppose that f has a fixed critical point p. Then there exists a
sequence {µn}n∈N of ergodic f -invariant Borel probability measures in M(S2, f) such that {µn}n∈N
converges to δp in the weak∗ topology and satisfies
(5.4) lim

n→+∞
hµn(f) = log

(
degf (p)

)
> 0 = hδp(f).

In particular, the entropy map of f is not upper semi-continuous at δp.
Proof. Let p ∈ S2 be a critical point of f that is fixed by f . Set k := degf (p). Then k > 1. Note
that δp ∈ M(S2, f) and hδp(f) = 0, where δp is the Dirac measure supported on {p}. It suffices to
construct a sequence {µn}n∈N of ergodic f -invariant Borel probability measures in M(S2, f) such
that {µn}n∈N converges to δp in the weak∗ topology and satisfies (5.4).

We first give the construction of {µn}n∈N.
Fix arbitrary n ∈ N. The set of n-tiles of f at p is defined as Xn(f, C, p) := {X ∈ Xn(f, C) : p ∈ X}.

Then by Remark 3.4, we have Wn
(p) =

∪
Xn(f, C, p) and card(Xn(f, C, p)) = 2(degf (p))

n = 2kn,
where Wn(p) is defined in (3.6) and W

n
(p) is the closure of Wn(p).

Since f ∈ Sub(f, C) is strongly primitive, by Lemma 3.22, there exists an integer nf ∈ N depending
only on f and C such that for each n-tile Xn ∈ Xn(f, C), there exists a black (n+ nf )-tile X

n+nf
b ∈

X
n+nf
b (f, C) and a white (n+ nf )-tile X

n+nf
w ∈ X

n+nf
w (f, C) such that Xn+nf

b ∪Xn+nf
w ⊆ inte(Xn).

We denote by En the set consisting of two such (n + nf )-tiles, one black and one white, for each
n-tile Xn ∈ Xn(f, C, p). In particular, we have card(En) = 2 card(Xn(f, C, p)) = 4kn.
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We set Fn := fn+nf |∪En and F̂n := Fn|Ωn , where Ωn := Ω(Fn, C) is the tile maximal invariant
set associated with Fn with respect to C. Note that p ∈ post f ⊆ C. By Remark 3.4 and Proposi-
tion 3.8, Fn ∈ Sub(fn+nf , C) is strongly primitive. Then it follows from Theorem 3.25 and [LSZ25,
Theorem 1.1] that there exists µ̂n ∈ M(Ωn, F̂n) ⊆ M(S2, fn+nf ) such that supp µ̂n ⊆ Ωn ⊆

∪
En ⊆∪

Xn(f, C, p) =W
n
(p) and

hµ̂n(f
n+nf ) = hµ̂n(F̂n) = P (Fn, 0) = htop(Fn),

where P (Fn, 0) and htop(Fn) are defined in Definition 3.23. Put

µn :=
1

n+ nf

n+nf−1∑
j=0

f j∗ µ̂n.

Applying Lemma 5.2, we have µn ∈ M(S2, f) and (n+ nf )hµn(f) = hµ̂n(f
n+nf ) = htop(Fn).

Now we calculate hµn(f) for each n ∈ N and show that (5.4) holds.
By Definition 3.23 and Proposition 3.24, we have htop(Fn) = log(ρ(An)), where An is the tile

matrix of Fn with respect to C and ρ(An) is the spectral radius of An. Recall from Definition 3.18
and Remark 3.19 that

An = A(En) =

[
Nww Nbw

Nwb Nbb

]
,

where Ncc′ := card
({
X ∈ En : X ∈ X

n+nf
c (f, C), X ⊆ X0

c′
})

for each pair of c, c′ ∈ {b,w}. In
particular, since f(C) ⊆ C, by the construction of En and Proposition 3.17 (ii), one has Nbc′ = Nwc′

and Ncb +Ncw = card(En)/2 = 2kn for each pair of c, c′ ∈ {b,w}. Then it follows that ρ(An) = 2kn.
Hence htop(Fn) = log(2kn) and (5.4) holds since

hµn(f) =
htop(Fn)

n+ nf
=

log(2kn)

n+ nf
−→ log k as n→ +∞.

Finally, we show that {µn}n∈N converges to δp in the weak∗ topology. It suffices to show that for
each φ ∈ C(S2),

∫
φdµn → φ(p) as n→ +∞.

We fix a visual metric d that satisfies the Assumptions in Section 4.
Fix arbitrary φ ∈ C(S2) and ε > 0. Since φ is continuous at p, there exists a number δ > 0 such

that for each x ∈ S2 with d(x, p) < δ, we have |φ(x) − φ(p)| < ε. By Proposition 3.6 (ii), there
exists an integer N ∈ N such that for each integer ℓ > N , we have W ℓ

(p) ⊆ Bd(p, δ). For each
n ∈ N and each j ∈ {0, 1, . . . , n− 1}, it follows from supp µ̂n ⊆W

n
(p) and (3.7) in Remark 3.4 that

supp f j∗ µ̂n ⊆ f j
(
W

n
(p)
)
= W

n−j
(p). Thus for sufficiently large n, we have Wn−j

(p) ⊆ Bd(p, δ) for
all j ∈ {0, 1, . . . , n−N − 1}. Then∣∣∣φ(p)− ∫ φdµn

∣∣∣ = ∣∣∣∣φ(p)− 1

n+ nf

n+nf∑
j=0

∫
φdf j∗ µ̂n

∣∣∣∣
⩽
∣∣∣∣φ(p)− 1

n+ nf

n−N−1∑
j=0

∫
φdf j∗ µ̂n

∣∣∣∣+ N + nf
n+ nf

∥φ∥∞

⩽ 1

n+ nf

n−N−1∑
j=0

∫
|φ− φ(p)| df j∗ µ̂n +

2(N + nf )

n+ nf
∥φ∥∞

⩽ n−N

n+ nf
ε+

2(N + nf )

n+ nf
∥φ∥∞

⩽ 2ε

for sufficiently large n. This implies
∫
φdµn → φ(p) as n→ +∞ for each φ ∈ C(S2).

The proof is complete. □
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Based on Proposition 5.4, we now prove the general cases by applying Proposition 5.3.
Recall that a point x ∈ S2 is a periodic point of f : S2 → S2 with period n ∈ N if fn(x) = x and

f i(x) ̸= x for each i ∈ {1, 2, . . . , n− 1}.

Theorem 5.5. Let f : S2 → S2 be an expanding Thurston map. Suppose that f has a periodic
critical point p with period n for some n ∈ N. Denote Vn(p) := 1

n

∑n−1
i=0 δf i(p). Then there exists a

sequence {νk}k∈N of ergodic f -invariant Borel probability measures in M(S2, f) such that {νk}k∈N
converges to Vn(p) in the weak∗ topology and satisfies

(5.5) lim
k→+∞

hνk(f) =
1

n
log
(
degfn(p)

)
> 0 = hVn(p)(f).

In particular, the entropy map of f is not upper semi-continuous at Vn(p).

Proof. Suppose that p ∈ S2 is a periodic critical point of f with period n for some n ∈ N.
By Lemma 3.7, we can find a sufficiently high iterate fm of f that has an fm-invariant Jordan

curve C ⊆ S2 with post fnm = post f ⊆ C. We fix such Jordan curve C and set F := fN with
N := nm. Thus F (C) ⊆ C and p is a fixed critical point of F with degF (p) =

(
degfn(p)

)m. Note
that F is also an expanding Thurston map.

By Proposition 5.4, there exists a sequence {µk}k∈N of ergodic F -invariant Borel probability mea-
sures in M(S2, F ) such that {µk}k∈N converges to δp in the weak∗ topology and satisfies

(5.6) lim
k→+∞

hµk(F ) = log
(
degF (p)

)
> hδp(F ) = 0.

We define νk := 1
N

∑N−1
j=0 f j∗µk for each k ∈ N. It follows immediately from Lemma 5.2 that

νk ∈ M(S2, f) and νk is ergodic for f . Note that {νk}k∈N converges to Vn(p) in the weak∗ topology.
Indeed, for each φ ∈ C(X), since SfNφ ∈ C(X) and {µk}k∈N converges to δp in the weak∗ topology,
we have ∫

φdνk =
1

N

∫
SfNφdµk −→

1

N

∫
SfNφdδp =

∫
φdVn(p) as k → +∞.

Finally, by (5.6) and Lemma 5.2 we have

lim
k→+∞

hνk(f) =
1

N
lim

k→+∞
hµk(F ) =

1

N
log
(
degF (p)

)
=

1

n
log
(
degfn(p)

)
>
hδp(F )

N
= hVn(p)(f) = 0.

This completes the proof. □

Proof of Theorem 1.1. By [Li15, Corollary 1.3], if f has no periodic critical points, then the entropy
map of f is upper semi-continuous. The opposite direction follows immediately from Theorem 5.5. □

6. Entropy density

This section is devoted to the proof of entropy density of ergodic measures for expanding Thurston
maps, with the main result being Theorem 1.2.

We first introduce some notations.
Notations. For ℓ ∈ N we define

C(S2)ℓ := {φ⃗ = (φ1, . . . , φℓ) : φj ∈ C(S2) for each j ∈ {1, . . . , ℓ}}.

For φ⃗ = (φ1, . . . , φℓ) ∈ C(S2)ℓ, α⃗ = (α1, . . . , αℓ) ∈ Rℓ, and µ ∈ P(S2), the expression
∫
φ⃗dµ > α⃗

indicates that
∫
φj dµ > αj holds for each j ∈ {1, . . . , ℓ}. The meaning of

∫
φ⃗dµ ⩾ α⃗ is analogous.

We write Snφ⃗ := (Snφ1, . . . , Snφℓ) ∈ C(S2)ℓ. Put ∥α⃗∥ := max1⩽j⩽ℓ |αj | and ∥φ⃗∥ := max1⩽j⩽ℓ∥φj∥∞.
For ε ∈ R we use the convention that α⃗+ ε := (α1 + ε, . . . , αℓ + ε) ∈ Rℓ.

Let f : S2 → S2 be an expanding Thurston map and C ⊆ S2 be a Jordan curve containing post f .
For a real-valued function ψ : S2 → R and an integer n ∈ N define

(6.1) Dn(ψ) = Df, C
n (ψ) := sup

Xn∈Xn(f,C)
sup

x, y∈Xn
|Snψ(x)− Snψ(y)|.
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Note that Dn(ψ) ⩽ nD1(ψ) holds for every n ∈ N. For ℓ ∈ N and φ⃗ ∈ C(S2)ℓ, we write Dn(φ⃗) :=
max1⩽j⩽ℓDn(φj) for each n ∈ N.

Indeed, for φ ∈ C(S2) we have limn→+∞Dn(φ)/n = 0.

Lemma 6.1. Let f and C satisfy the Assumptions in Section 4. Then

lim
n→+∞

1

n
Dn(φ) = 0

for each φ ∈ C(S2).

Proof. We fix a visual metric d that satisfies the Assumptions in Section 4.
Fix arbitrary φ ∈ C(S2) and ε > 0. Since φ is uniformly continuous on S2, there exists a number

δ > 0 such that for each pair of p, q ∈ S2 that satisfy d(p, q) < δ, we have |φ(p) − φ(q)| < ε. By
Proposition 3.6 (ii), there exists a constant C ⩾ 1 such that
(6.2) diamd

(
Xk
)
⩽ CΛ−k for all k ∈ N0 and Xk ∈ Xk(f, C).

This implies that there exists N ∈ N such that diamd

(
Xk
)
< δ for all integer k > N and Xk ∈

Xk(f, C). Then for each sufficiently large n ∈ N, each Xn ∈ Xn(f, C), and each pair of x, y ∈ Xn,
by Proposition 3.2 (i), we have

|Snφ(x)− Snφ(y)| ⩽
n−N−1∑
k=0

|φ(f i(x))− φ(f i(y))|+
n−1∑

k=n−N
|φ(f i(x))− φ(f i(y))|

⩽ (n−N)ε+N∥φ∥∞.
It follows that

lim sup
n→+∞

1

n
Dn(φ) ⩽ lim

n→+∞

n−N

n
ε+

N∥φ∥∞
n

= ε.

Since ε > 0 is arbitrary, the proof is complete. □
Let f and C satisfy the Assumptions in Section 4. We assume in addition that f(C) ⊆ C. In the

following, we set

(6.3) E∞ :=
∪
n∈N0

f−n(C).

Then E∞ is a Borel set. Proposition 3.2 (ii) implies that E∞ is equal to the union of all edges. Since
every vertex is contained in an edge, the set E∞ also contains all vertices. Moreover, we have
(6.4) f−1(E∞) = E∞.

Indeed, note that C ⊆ f−1(C) and so

f−1(E∞) = f−1

( ∪
n∈N0

f−n(C)
)

=
∪
n∈N0

f−(n+1)(C) =
∪
n∈N

f−nC = C ∪
∪
n∈N

f−nC = E∞.

The next lemma approximates ergodic measures with a finite collection of tiles in a particular
sense.

Lemma 6.2. Let f and C satisfy the Assumptions in Section 4. We assume in addition that f(C) ⊆ C.
Consider ℓ ∈ N and φ⃗ ∈ C(S2)ℓ. Then for each ergodic f -invariant measure µ ∈ P(S2) and each
ε > 0, there exists n0 ∈ N such that for each integer n ⩾ n0, there exists a non-empty subset Tn of
Xn(f, C) such that ∣∣∣∣ 1n log card(Tn)− hµ(f)

∣∣∣∣ ⩽ ε and(6.5)

sup
x∈

∪
Tn

∥∥∥∥ 1nSnφ⃗(x)−
∫
φ⃗dµ

∥∥∥∥ ⩽ ε.(6.6)

To prove Lemma 6.2, we need the following lemma, which is a generalization of [BM17, Lemma 17.7].
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Lemma 6.3. Let f and C satisfy the Assumptions in Section 4. We assume in addition that f(C) ⊆ C.
Consider an f -invariant Borel probability measure µ ∈ P(S2). Then the following statements hold:

(i) Suppose that µ(E∞) = 0. Then for each n ∈ N, the set Xn(f, C) forms a measurable partition
for (S2, µ) and is equivalent to the partition ξnf where ξ = X1(f, C). Moreover, ξ = X1(f, C)
is a generator for (f, µ).

(ii) Suppose that µ(E∞) = 1 and µ is non-atomic. Then µ(C) = 1. Additionally, for each n ∈ N,
the set En(f, C) forms a measurable partition for (S2, µ) and is equivalent to the partition ηnf
where η = E1(f, C). Moreover, η = E1(f, C) is a generator for (f, µ).

(iii) Suppose that there exists a point x ∈ S2 such that µ({x}) > 0. Then x is a periodic point of
f . Moreover, if we assume in addition that µ is ergodic, then µ = 1

n

∑n−1
i=0 δf i(x), where n is

the period of x.

Proof. (i) Statement (i) was established in [BM17, Lemma 17.7].
(ii) We first note that it follows immediately from our assumptions that µ(C) = 1. Indeed, since

µ is f -invariant, we have µ(f−n(C)) = µ(C) for all n ∈ N0. On the other hand, C ⊆ f−n(C), and so
µ(f−n(C) \ C) = 0. This implies that µ(E∞ \ C) = 0. So µ is actually concentrated on C.

Since µ is non-atomic, we have µ(v) = 0 for all vertices v ∈
∪
n∈N0

Vn(f, C). For each n ∈ N, since
f(C) ⊆ C ⊆ f−n(C), the set

∪
En(f, C) has full measure, and two distinct n-edges have only vertices,

i.e., a set of µ-measure zero, in common. Hence En(f, C) is a measurable partition for (S2, µ).
Fix arbitrary n ∈ N and e ∈ En(f, C). We now show that En(f, C) is equivalent to the partition

ηnf , where η = E1(f, C). For i = 1, . . . , n there exist unique i-edges ei ∈ Ei(f, C) with e = en ⊆
en−1 ⊆ · · · ⊆ e1. Set ei := f i−1(ei) for i = 1, . . . , n. Then e1, . . . , en are 1-edges. We claim that

(6.7) e = e1 ∩ f−1(e2) ∩ · · · ∩ f−(n−1)(en).

To see this, denote the right hand side in this equation by ẽ. Then it is clear that e ⊆ ẽ. We verify
e = ẽ by inductively showing that for any point x ∈ ẽ we have x ∈ ei for i = 1, . . . , n, and so
x ∈ en = e.

Indeed, since ẽ ⊆ e1 = e1 this is clear for i = 1. Suppose x ∈ ei−1 for some i ∈ N with 2 ⩽ i ⩽ n.
To complete the inductive step, we have to show x ∈ ei. Note that x ∈ ẽ ⊆ f−(i−1)(ei) and so
f i−1(x) ∈ ei. By Proposition 3.2 (i), the map f i−1|ei−1 is a homeomorphism of ei−1 onto the 0-edge
f i−1(ei−1). Moreover, x ∈ ei−1, ei ⊆ ei−1, and f i−1(x) ∈ ei = f i−1(ei). Hence by injectivity of f i−1

on ei−1 we have x ∈ ei as desired.
Equation (6.7) shows that every element in En(f, C) belongs to ηnf , where η = E1(f, C). This

implies that the measurable partitions En(f, C) and ηnf are equivalent (ηnf may contain additional
sets, but they have to be of measure zero).

To establish that η = E1(f, C) is a generator, let B ⊆ S2 be an arbitrary Borel set and ε > 0.
Since the measurable partitions En(f, C) and ηnf are equivalent for each n ∈ N, it suffices to show
that there exists k ∈ N and a union A of k-edges such that µ(A△B) < ε.

By regularity of µ there exists a compact set K ⊆ B and an open set U ⊆ S2 with K ⊆ B ⊆ U
and µ(U \K) < ε. Since the diameters of edges approach 0 uniformly as their levels become larger,
we can choose k ∈ N large enough such that every k-edge that meets K is contained in the open
neighborhood U of K. Define KC := K ∩ C and

A :=
∪{

ek ∈ Ek(f, C) : ek ∩KC ̸= ∅
}
.

Then KC ⊆ A ⊆ U . This implies A△B ⊆ U \KC , and so
µ(A△B) ⩽ µ(U \KC) ⩽ µ(U \K) + µ(U \ C) = µ(U \K) < ε

as desired. The proof of statement (ii) is complete.
(iii) Assume first that there exists a pint x ∈ S2 such that µ({x}) > 0.
We claim that x is preperiodic. Otherwise, for each pair of k, ℓ ∈ N with k ̸= ℓ, we have fk(x) ̸=

f ℓ(x). We write xn := fn(x) for each n ∈ N. Then x ∈ f−n(xn) and µ({xn}) = µ(f−n(xn)) ⩾ µ({x})
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for each n ∈ N since µ is f -invariant. This implies

1 = µ(S2) ⩾
+∞∑
n=1

µ({xn}) ⩾
+∞∑
n=1

µ({x}) = +∞,

which is a contradiction. This proves the claim that x is preperiodic.
We now show that x is periodic. Since x is preperiodic, there exist m ∈ N0 and n ∈ N such that

fn+m(x) = fm(x). Denote y := fnm(x). Then fn(y) = fn+nm(x) = fnm(x) = y, i.e., y is a periodic
point of f . Since fnm(x) = fnm(y) = y and µ is f -invariant, we have

µ({y}) = µ(f−nm(y)) ⩾ µ({x} ∪ {y}).

This implies x = y since µ({x}) > 0. Thus x is periodic.
Finally, we assume in addition that µ is ergodic. Let n ∈ N be the period of x. We set

Orb(x) :=
{
fk(x) : k ∈ N0

}
=
{
fk(x) : k ∈ {0, . . . , n− 1}

}
and

x∞ := {x} ∪
∪
k∈N

f−k(x) =
∪
k∈N0

f−k(Orb(x)).

Since x ∈ f−n(x), we have

f−1(x∞) = f−1

(
{x} ∪

∪
k∈N

f−k(x)

)
= f−1(x) ∪

∪
k∈N

f−(k+1)(x)

=
∪
k∈N

f−k(x) = {x} ∪
∪
k∈N

f−k(x) = x∞.

This implies µ(x∞) = 1 since µ is ergodic and µ(x∞) ⩾ µ({x}) > 0. Since µ is f -invariant, we have
µ
(
f−k(Orb(x))

)
= µ(Orb(x)) for all k ∈ N0. On the other hand, Orb(x) ⊆ f−k(Orb(x)), and so

µ
(
f−k(Orb(x)) \ Orb(x)

)
= 0. Thus we have µ(x∞ \ Orb(x)) = 0. So µ actually concentrates on

Orb(x).
It suffices to show that µ

({
fk(x)

})
= 1/n for each k ∈ {0, . . . , n−1}. Indeed, since µ is f -invariant

and fk(x) ∈ f−1
(
fk+1(x)

)
, we have µ

({
fk+1(x)

})
= µ

(
f−1

(
fk+1(x)

))
⩾ µ

({
fk(x)

})
. This implies

µ({x}) ⩽ µ
({
fk(x)

})
⩽ µ({fn(x)}) = µ({x}).

Hence µ
({
fk(x)

})
= µ({x}) = 1/n for each k ∈ {0, . . . , n− 1}.

The proof of statement (iii) is complete. □

Now we can prove Lemma 6.2.

Proof of Lemma 6.2. Fix arbitrary ε > 0, ℓ ∈ N, φ⃗ ∈ C(S2)ℓ, and ergodic f -invariant measure
µ ∈ P(S2). It suffices to show that for every sufficiently large n ∈ N, there exists a non-empty subset
Tn of Xn(f, C) such that (6.5) and (6.6) hold. We split the proof into three cases according to the
properties of measure µ. Recall the definition of E∞ in (6.3).

Case 1: µ(E∞) = 0.
Since µ is f -invariant and µ(E∞) = 0, by Lemma 6.3 (i), X1(f, C) is a generator for (f, µ), and

for each n ∈ N the set Xn(f, C) forms a measurable partition for (S2, µ) and is equivalent to the
partition ξnf where ξ = X1(f, C). Then one can use Birkhoff’s ergodic theorem and the Shannon–
McMillan–Breiman theorem to show that for every sufficiently large n ∈ N, there exists a non-empty
subset Tn of Xn(f, C) such that (6.5) and (6.6) hold.

Case 2: µ(E∞) > 0 and µ is non-atomic.
First note that µ(E∞) = 1 in this case since µ is ergodic and f−1(E∞) = E∞ (see (6.4)). Then it

follows from Lemma 6.3 (ii) that E1(f, C) is a generator for (f, µ), and for each n ∈ N the set En(f, C)
forms a measurable partition for (S2, µ) and is equivalent to the partition ηnf where η = E1(f, C).
Similar to Case 1, one can use Birkhoff’s ergodic theorem and the Shannon–McMillan–Breiman



26 ZHIQIANG LI AND XIANGHUI SHI

theorem to show that there exists N ∈ N such that for each integer n ⩾ N , there exists a non-empty
subset Sn of En(f, C) such that ∣∣∣∣ 1n log card(Sn)− hµ(f)

∣∣∣∣ ⩽ ε/2 and(6.8)

sup
x∈

∪
Sn

∥∥∥∥ 1nSnφ⃗(x)−
∫
φ⃗dµ

∥∥∥∥ ⩽ ε/2.(6.9)

For each integer n ⩾ N , we set
Tn := {Xn ∈ Xn(f, C) : en ⊆ ∂Xn, en ∈ Sn}.

Then by Proposition 3.2 (iii) and Remark 3.3, we have
card(Sn)/ card(post f) ⩽ card(Tn) ⩽ 2 card(Sn).

Combining this with (6.8), we see that (6.5) holds for every sufficiently large n ∈ N. Noting that
φ⃗ = (φ1, . . . , φℓ) ∈ C(S2)ℓ, by Lemma 6.1, we have

sup
Xn∈Xn(f,C)

sup
x, y∈Xn

∥∥∥∥ 1nSnφ⃗(x)− 1

n
Snφ⃗(y)

∥∥∥∥ −→ 0 as n→ +∞.

Therefore, (6.9) implies that (6.6) holds for every sufficiently large n ∈ N.
Case 3: µ(E∞) > 0 and there exists p ∈ S2 such that µ(p) > 0.
By Lemma 6.3 (iii), p is a periodic point of f and µ = Vk(p), where k is the period of p. In

particular, we have hµ(f) = 0. Fix arbitrary n ∈ N. For each i ∈ {1, . . . , k− 1}, we choose an n-tile
Xn
i ∈ Xn(f, C) such that f i(p) ∈ Xn

i . We denote by Tn the set of those n-tiles. Then 1 ⩽ card(Tn) ⩽
k. This implies (6.5) holds for every sufficiently large n ∈ N. Since limn→+∞

1
nSnφ⃗(f

i(x)) =

k−1Skφ⃗(p) =
∫
φ⃗dµ for each i ∈ {1, . . . , k−1}, by Lemma 6.1, (6.6) holds for every sufficiently large

n ∈ N.
The proof is complete. □

Apart from Lemma 6.2, we need the following lemma to construct strongly primitive subsystems
in the proof of Theorem 1.2.

Lemma 6.4. Let f , C, e0 satisfy the Assumptions in Section 4. We assume in addition that f(C) ⊆ C.
Consider ℓ ∈ N and φ⃗ = (φ1, . . . , φℓ) ∈ C(S2)ℓ. Let µ ∈ M(S2, f) be an ergodic measure. Then for
each ε > 0, there exists an integer N ∈ N such that for each integer n ⩾ N and each color c ∈ {b,w},
there exists an n-pair Pnc ∈ Pn(f, C, e0) such that Pnc ⊆ inte

(
X0

c

)
and

sup
x∈Pnc

∥∥∥∥ 1nSnφ⃗(x)−
∫
φ⃗dµ

∥∥∥∥ ⩽ ε.

Proof. Let ε > 0 be arbitrary. Since µ is ergodic, it follows from Birkhoff’s ergodic theorem that for
µ-a.e. x ∈ S2, 1

nSnφ⃗(x) →
∫
φ⃗dµ as n→ +∞. Thus we can fix a point y ∈ S2 and an integer n0 ∈ N

such that for each integer n ⩾ n0,

(6.10)
∥∥∥∥ 1nSnφ⃗(y)−

∫
φ⃗dµ

∥∥∥∥ ⩽ ε

2
.

By Lemma 3.14, there exists an integer M ∈ N such that for each color c ∈ {b,w}, there exists
an M -pair PMc ∈ PM (f, C, e0) such that for each integer n ⩾ M and each x ∈ PMc , we have
Un(x) ⊆ inte

(
X0

c

)
.

We fix such an integer M ∈ N and the corresponding M -pairs PMb and PMw in the following.
Let color c ∈ {b,w} and integer n ⩾M + n0 be arbitrary. Since n−M ⩾ n0, by (6.10), we have∥∥∥∥ 1

n−M
Sn−M φ⃗(y)−

∫
φ⃗dµ

∥∥∥∥ ⩽ ε

2
.
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Since fM (PMc ) = S2, there exists xc ∈ PMc such that fM (xc) = y. Then we have∥∥∥∥ 1nSnφ⃗(xc)−
∫
φ⃗dµ

∥∥∥∥ =

∥∥∥∥ 1nSM φ⃗(xc) + 1

n
Sn−M φ⃗(y)−

∫
φ⃗dµ

∥∥∥∥
⩽ 1

n
∥SM φ⃗∥+

∣∣∣∣ 1n − 1

n−M

∣∣∣∣∥Sn−M φ⃗∥+ ∥∥∥∥ 1

n−M
Sn−M φ⃗(y)−

∫
φ⃗dµ

∥∥∥∥
⩽ 2M

n
∥φ⃗∥+ ε

2
.

By Definition 3.12, there exists an n-pair Pnc ∈ Pn(f, C, e0) containing xc. Noting that xc ∈ PMc and
n ⩾ M , by Lemma 3.14, we get Un(xc) ⊆ inte

(
X0

c

)
. Thus it follows from the definition of Un(xc)

and Pnc that xc ∈ Pnc ⊆ Un(xc) ⊆ inte
(
X0

c

)
. Then we have

sup
x∈Pnc

∥∥∥∥ 1nSnφ⃗(x)−
∫
φ⃗dµ

∥∥∥∥ ⩽ sup
x∈Pnc

∥∥∥∥ 1nSnφ⃗(x)− 1

n
Snφ⃗(xc)

∥∥∥∥+ ∥∥∥∥ 1nSnφ⃗(xc)−
∫
φ⃗dµ

∥∥∥∥
⩽ 2Dn(φ⃗)

n
+

2M

n
∥φ⃗∥+ ε

2
.

Therefore, by Lemma 6.1, we can find a sufficiently large integer N ∈ N such that for each integer
n ⩾ N and each color c ∈ {b,w}, there exists an n-pair Pnc ∈ Pn(f, C, e0) such that Pnc ⊆ inte

(
X0

c

)
and

sup
x∈Pnc

∥∥∥∥ 1nSnφ⃗(x)−
∫
φ⃗dµ

∥∥∥∥ ⩽ ε.

The proof is complete. □
The following result shows that in order to prove Theorem 1.2, it suffices to prove entropy density

of ergodic measures for some iterate of the map f .

Proposition 6.5. Let (X, d) be a compact metric space and T : X → X be a continuous map.
Consider arbitrary n ∈ N. Then Merg(X,T ) is entropy-dense in M(X,T ) if and only if Merg(X,T

n)
is entropy-dense in M(X,Tn).

Proof. Fix arbitrary n ∈ N. Since Tn itself is also a continuous map from X to X, it suffices to
prove the “if” part. We assume that for each ν ∈ M(X,Tn), there exists a sequence {νk}k∈N of Tn-
invariant ergodic measures of Tn that converges to ν in the weak∗-topology with hνk(Tn) → hν(T

n)
as k → +∞.

Let µ ∈ M(X,T ) be arbitrary. Since µ ∈ M(X,T ) ⊆ M(X,Tn), there exists a sequence {νk}k∈N
of Tn-invariant ergodic measures of Tn that converges to µ in the weak∗-topology with hνk(T

n) →
hµ(T

n) as k → +∞. For each k ∈ N, we define

µk :=
1

n

n−1∑
i=0

T i∗νk.

Then it follows from Lemma 5.2 that µk ∈ M(X,T ) is ergodic for T and nhµk(T ) = hνk(T
n). This

implies hµk(T ) → hµ(T ) as k → +∞. Noting that the sequence {µk}k∈N also converges to µ in the
weak∗-topology, the proof is complete. □

After these preparations, we are ready to prove the main result of this section.

Proof of Theorem 1.2. By Proposition 6.5, it suffices to prove that Merg(S
2, f i) is entropy-dense in

M(S2, f i) for some i ∈ N. Hence by Lemma 3.7, we may assume without loss of generality that
there exists a Jordan curve C ⊆ S2 containing post f such that f(C) ⊆ C.

Let µ ∈ M(S2, f), ε > 0, ℓ ∈ N, and φ⃗ = (φ1, . . . , φℓ) ∈ C(S2)ℓ be arbitrary. By the definition
of entropy density (see Subsection 1.1), it suffices to find an ergodic measure ν ∈ Merg(S

2, f) such
that

∥∥∫ φ⃗dν −
∫
φ⃗dµ

∥∥ ⩽ ε and |hν(f)− hµ(f)| ⩽ ε.
By virtue of the Choquet representation theorem (see for example, [KH95, Theorem A.2.10]) and

Jacobs’ Theorem (see for example, [Wal82, Theorem 8.4]), for every neighborhood Γ of µ in M(S2, f)
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and every δ > 0 there exist s ∈ N and ergodic measures µ1, . . . , µs and ρ1, . . . , ρs ∈ (0, 1) such that
ρ1+ · · ·+ρs = 1, and the measure µ̄ := ρ1µ1+ · · ·+ρsµs belongs to Γ and satisfies |hµ̄(f)−hµ(f)| < δ.
Hence, we may assume without loss of generality that µ is a convex combination of finitely many
ergodic measures, i.e.,
(6.11) µ = ρ1µ1 + · · ·+ ρsµs

with s ∈ N, µ1, . . . , µs ∈ Merg(S
2, f), ρ1, . . . , ρs ∈ (0, 1), and ρ1 + · · ·+ ρs = 1.

We fix a 0-edge e0 ∈ E0(f, C). By Lemmas 6.2 and 6.4, for each i ∈ {1, . . . , s}, there exists Ñi ∈ N
such that for each integer ni ⩾ Ñi, there exists a non-empty subset T̃ni of Xni(f, C) such that∣∣∣∣ 1ni log card(T̃ni

)
− hµi(f)

∣∣∣∣ ⩽ ε

4
and(6.12)

sup
x∈

∪
T̃ni

∥∥∥∥ 1

ni
Sniφ⃗(x)−

∫
φ⃗dµi

∥∥∥∥ ⩽ ε

6
,(6.13)

and for each color c ∈ {b,w}, there exists an ni-pair Pnic ∈ Pni(f, C, e0) such that Pnic ⊆ inte
(
X0

c

)
and

(6.14) sup
x∈Pnic

∥∥∥∥ 1

ni
Sniφ⃗(x)−

∫
φ⃗dµi

∥∥∥∥ ⩽ ε

6
.

Fix arbitrary i ∈ {1, . . . , s}. For each c ∈ {b,w} we can write Pnic = Xni
bc ∪ Xni

wc for some Xni
bc ∈

Xni
b (f, C) and Xni

wc ∈ Xni
w (f, C). Note that by Proposition 3.2 (i), for each Xni ∈ Xni(f, C) there

exists exactly one ni-edge eni ⊆ ∂Xni such that fni(eni) = e0. Then by Remark 3.3, there exist
exactly two ni-tiles in Xni(f, C) containing eni , one of which is Xni itself, and we denote by X̃ni

the other. Indeed, Xni ∪ X̃ni is an ni-pair in Pni(f, C, e0). Now we construct a new subset Tni of
Xni(f, C) from the old one T̃ni by setting

Tni := T̃ni ∪
{
X̃ni : Xni ∈ T̃ni

}
∪
{
Xni

bb

}
∪
{
Xni

wb

}
∪
{
Xni

bw

}
∪
{
Xni

ww

}
Then

∪
Tni is actually a union of some pairs in Pni(f, C, e0) and we have

card
(
T̃ni

)
⩽ card(Tni) ⩽ 2 card

(
T̃ni

)
+ 4.

Moreover, it follows from (6.13), (6.14), and the structure of pairs that

sup
x∈

∪
Tni

∥∥∥∥ 1

ni
Sniφ⃗(x)−

∫
φ⃗dµi

∥∥∥∥ ⩽ ε

6
+

2Dni(φ⃗)

ni
.

Therefore, by (6.12) and Lemma 6.1, we can find a sufficiently large integer Ni ∈ N such that for
each integer ni ⩾ Ni, there exists a non-empty subset Tni of Xni(f, C) such that∣∣∣∣ 1ni log card(Tni)− hµi(f)

∣∣∣∣ ⩽ ε

2
and(6.15)

sup
x∈

∪
Tni

∥∥∥∥ 1

ni
Sniφ⃗(x)−

∫
φ⃗dµi

∥∥∥∥ ⩽ ε

3
.(6.16)

Moreover, we have card
(
Tni ∩Xni

b (f, C)
)
= card

(
Tni ∩Xni

w (f, C)
)
, and for each pair of c, c′ ∈ {b,w}

there exists Xni
cc′ ∈ Tni such that fni

(
Xni

cc′
)
= X0

c and Xni
cc′ ⊆ X0

c′ . In the rest of the proof for each
i ∈ {1, . . . , s} we fix an integer ni ⩾ Ni and a corresponding non-empty subset Tni of Xni(f, C)
obtained from the above construction.

We now introduce some notions that will be used in the rest of the proof. Let n ∈ N and
Xn ∈ Xn(f, C) be arbitrary. Set Yn−j := f j(Xn) for each j ∈ {0, . . . , n− 1}. We label the 1-tiles by
X1

1 , . . . , X
1
2 deg f . Then by Proposition 3.8, for each j ∈ {0, . . . , n− 1}, there exists a unique integer

tj ∈ {1, . . . , 2 deg f} such that Yn−j ⊆ X1
tj . We denote by w(Xn) the n-string t0t1 · · · tn−1 and by

[w(Xn)] the n-tile Xn.
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Let k ∈ N and Y k ∈ Xk(f, C) be arbitrary. If Y k ⊆ fn(Xn), then it follows from Proposition 3.2 (i)
and [BM17, Lemma 5.17 (i)] that Zn+k := (fn|Xn)−1

(
Y k
)

∈ Xn+k(f, C). One can check that
w
(
Zn+k

)
= w(Xn)w

(
Y k
)

in this case. By Definition 3.20 and Remark 3.21, there exists a constant
N ∈ N such that for each pair of c, c′ ∈ {b,w}, there exists XN

cc′ ∈ XN
c (f, C) satisfying XN

cc′ ⊆ X0
c′ . We

define λcc′ := w
(
XN

cc′
)

for each pair of c, c′ ∈ {b,w}. Then [λcc′ ] = XN
cc′ for each pair of c, c′ ∈ {b,w}.

If fn(Xn) = X0
c and Y k ⊆ X0

c′ for some c, c′ ∈ {b,w}, we define λ
(
Xn, Y k

)
:= λcc′ . One can

check that there exists Zn+k+N ∈ Xn+k+N (f, C) such that w
(
Zn+k+N

)
= w(Xn)λ

(
Xn, Y k

)
w
(
Y k
)
,

Zn+k+N ⊆ Xn, and fn+N
(
Zn+k+N

)
= Y k.

For each i ∈ {1, . . . , s}, let ri ∈ N be arbitrary. Denote by Mi the integer niri+N(ri− 1) and by
Tni,ri the non-empty subset of XMi(f, C) consisting of Mi-tiles of the form
(6.17)

[
w(X1)λ(X1, X2)w(X2)λ(X2, X3)w(X3) · · ·λ(Xri−1, Xri)w(Xri)

]
with X1, . . . , Xri ∈ Tni . Denote by R the integer sN +

∑s
j=1 njrj and by T the non-empty subset

of XR(f, C) consisting of R-tiles of the form
(6.18)

[
w(Y1)λ(Y1, Y2)w(Y2)λ(Y2, Y3)w(Y3) · · ·λ(Ys−1, Ys)w(Ys)λ(Ys, Y1)

]
with Yj ∈ Tnj ,rj for each j ∈ {1, . . . , s}. Note that

(6.19) card(T) =

s∏
j=1

(
card

(
Tnj

))rj .
Enlarging each ni if necessary, it is possible to choose integers ri such that the following holds:

log 2

R
⩽ ε

6
,(6.20)

s∑
i=1

(
hµi(f) +

∥∥∥∥∫ φ⃗dµi

∥∥∥∥)∣∣∣ρi − niri
R

∣∣∣ ⩽ ε

3
, and(6.21)

1

R

s∑
i=1

ri sup
c,c′∈{b,w}

sup
x∈[λcc′ ]

∥∥SN φ⃗(x)∥∥ ⩽ ε

3
.(6.22)

By our construction of T and Tni for i ∈ {1, . . . , s}, we have
(6.23) card

(
T ∩XR

b (f, C)
)
= card

(
T ∩XR

w(f, C)
)
= card(T)/2

and fR|∪T is a strongly primitive subsystem of fR with respect to C. We set F := fR|∪T and
F̂ := F |Ω = fR|Ω, where Ω := Ω(F, C) is the tile maximal invariant set associated with F with
respect to C. Then it follows from Theorem 3.25 that there exists ν̂ ∈ M(Ω, F̂ ) ⊆ M

(
S2, fR

)
such

that hν̂
(
fR
)
= hν̂(F̂ ) = P (F, 0) = htop(F ) (recall Definition 3.23) and ν̂ is ergodic for F̂ . Define

(6.24) ν :=
1

R

R−1∑
j=0

f j∗ ν̂.

Noting that ν̂ is also ergodic for fR and then applying Lemma 5.2, we deduce that ν ∈ M(S2, f) is
ergodic for f and Rhν(f) = hν̂(f

R) = htop(F ).
We now calculate hν(f). By Definition 3.23 and Proposition 3.24, we have htop(F ) = log(ρ(A)),

where A is the tile matrix of F with respect to C and ρ(A) is the spectral radius of A. Recall from
Definition 3.18 and Remark 3.19 that

A = A(T) =

[
Nww Nbw

Nwb Nbb

]
,

where Ncc′ := card
({
X ∈ T : X ∈ XR

c (f, C), X ⊆ X0
c′
})

for each pair of c, c′ ∈ {b,w}. In particular,
since f(C) ⊆ C, by (6.23) and Proposition 3.17 (ii), one has Ncb + Ncw = card(T)/2 for each
c ∈ {b,w}. Then by some elementary calculations in linear algebra we obtain ρ(A) = card(T)/2.
Hence htop(F ) = log(card(T)/2) and hν(f) = (1/R) log(card(T)/2).
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By (6.11), (6.19), (6.15), (6.20), and (6.21), we have

|hµ(f)− hν(f)| ⩽
log 2

R
+

s∑
i=0

∣∣∣ρihµi − 1

R
ri log

(
card

(
Tnj

))∣∣∣
⩽ log 2

R
+

s∑
i=0

hµi(f)
∣∣∣ρi − niri

R

∣∣∣+ s∑
i=0

niri
R

∣∣∣hµi − 1

ni
log
(
card

(
Tnj

))∣∣∣
⩽ log 2

R
+

s∑
i=0

hµi(f)
∣∣∣ρi − niri

R

∣∣∣+ ε

2R

s∑
i=0

niri

⩽ ε

6
+
ε

3
+
ε

2
= ε.

Recall that R = sN +
∑s

i=1 niri and each tile XR in T has the form in (6.18), i.e.,

XR =
[
w(Y1)λ(Y1, Y2)w(Y2)λ(Y2, Y3)w(Y3) · · ·λ(Ys−1, Ys)w(Ys)λ(Ys, Ys+1)

]
with Ys+1 = Y1 and Yi ∈ Tni,ri for each i ∈ {1, . . . , s}. Here Tni,ri is a non-empty subset of
XMi(f, C) with Mi = niri +Nri −N . By (6.17) and (6.16), for each i ∈ {1, . . . , s},

sup
x∈[w(Yi)λ(Yi,Yi+1)]

∥∥∥∥SMi+N φ⃗(x)−Rρi

∫
φ⃗dµi

∥∥∥∥
⩽ sup

x∈[w(Yi)λ(Yi,Yi+1)]

∥∥∥∥SMi+N φ⃗(x)− niri

∫
φ⃗dµi

∥∥∥∥+R
∣∣∣ρi − niri

R

∣∣∣∥∥∥∥∫ φ⃗dµi

∥∥∥∥
⩽ ε

3
niri + ri sup

c,c′∈{b,w}
sup

x∈[λcc′ ]

∥∥SN φ⃗(x)∥∥+R
∣∣∣ρi − niri

R

∣∣∣∥∥∥∥∫ φ⃗dµi

∥∥∥∥.
Summing this over all i ∈ {1, . . . , s}, dividing the result by R, and then using (6.21) and (6.22) yield

sup
x∈XR

∥∥∥∥ 1RSRφ⃗(x)−
∫
φ⃗dµ

∥∥∥∥ ⩽ ε

3
+
ε

3
+
ε

3
= ε

for each XR ∈ T. This implies that

sup
x∈Ω

∥∥∥∥ 1RSRφ⃗(x)−
∫
φ⃗dµ

∥∥∥∥ ⩽ sup
x∈

∪
T

∥∥∥∥ 1RSRφ⃗(x)−
∫
φ⃗dµ

∥∥∥∥ ⩽ ε.

Note that supp ν̂ ⊆ Ω. Then it follows from (6.24) that∥∥∥∥∫ φ⃗dν −
∫
φ⃗dµ

∥∥∥∥ =

∥∥∥∥ 1R
∫
SRφ⃗dν̂ −

∫
φ⃗dµ

∥∥∥∥ ⩽ ε.

This shows that the ergodic measure ν fulfills our requirements (see the beginning of the proof) and
completes the proof. □

7. Large deviation principles

7.1. Level-2 large deviation principles. In this subsection we review some basic concepts and
results from large deviation theory. We refer the reader to [DZ09, Ell12, RAS15] for a systematic
and detailed introduction.

Let {ξn}n∈N be a sequence of Borel probability measures on a Hausdorff topological space X . We
say that {ξn}n∈N satisfies a large deviation principle in X if there exists a lower semi-continuous
function I : X → [0,+∞] such that

(7.1) lim inf
n→+∞

1

n
log ξn(G) ⩾ − inf

G
I for all open G ⊆ X ,



ENTROPY DENSITY AND LARGE DEVIATION PRINCIPLES 31

and

(7.2) lim sup
n→+∞

1

n
log ξn(K) ⩽ − inf

K
I for all closed K ⊆ X ,

where log 0 = −∞ and inf ∅ = +∞ by convention. Such a function I is called a rate function, and
we say that I is a good rate function if the set {x ∈ X : I(x) ⩽ α} is compact for every α ∈ [0,+∞).
If X is regular, then the rate function I is unique.

A Borel set A ⊆ X is called a I-continuity set if
inf{I(x) : x ∈ int(A)} = inf{I(x) : x ∈ A}.

When (7.1) and (7.2) hold then for each I-continuity set A ⊆ X the limit limn→+∞ n−1 log ξn(A)
exists and satisfies

(7.3) lim
n→+∞

1

n
log ξn(A) = − inf

A
I,

and we can replace A by either its interior or its closure. When only (7.1) (resp. (7.2)) is satisfied,
we say that the large deviation lower (resp. upper) bounds hold with the function I.

We call x ∈ X a minimizer if I(x) = 0 holds. The set of minimizers is a closed set. For a
closed subset K of X that is disjoint from the set of minimizers, the large deviation principle ensures
that ξn(K) decays exponentially as n → +∞. If moreover I is a good rate function, the support
of any accumulation point of {ξn}n∈N is contained in the set of minimizers. Hence, it is important
to determine the set of minimizers. The non-uniqueness of minimizers is referred to as a phase
transition. The uniqueness of minimizers implies several strong conclusions.

The following contraction principle shows that the large deviation principle transfers nicely through
continuous functions.
Theorem 7.1 (Contraction principle [DZ09, Theorem 4.2.1]). Let X and Y be Hausdorff topological
spaces, and let g : X → Y be a continuous map. Consider a sequence {ξn}n∈N of Borel probability
measures on X that satisfies a large deviation principle in X with a good rate function I : X → [0,+∞].
For each y ∈ Y, define

J(y) := inf{I(x) : x ∈ X , y = g(x)}.
Then J is a good rate function on Y, and the sequence {g∗(ξn)}n∈N satisfies a large deviation principle
in Y with the rate function J : Y → [0,+∞].

The above notations will be applied with X = P(X) (for some compact metric space X), Y = R,
and g = ψ̂ for some ψ ∈ C(X), where ψ̂ is the evaluation map on P(X) (i.e., ψ̂(µ) =

∫
ψ dµ). In this

context, the large deviation principles in P(X), are usually referred to as “level-2”, and the ones in
R (in particular those obtained by contraction) as “level-1”.

7.2. Uniqueness of the minimizer. In this subsection, we prove that µϕ is the unique minimizer
of the rate function Iϕ defined in (1.4). Recall that we call µ ∈ P(S2) a minimizer of Iϕ if Iϕ(µ) = 0.

Definition 7.2. Let X and X̃ be topological spaces, and T : X → X and T̃ : X̃ → X̃ be continuous
maps. We say that T is a factor (or topological factor) of T̃ if there exists a surjective continuous
map π : X̃ → X such that π ◦ T̃ = T ◦ π. Such a map π is called a semi-conjugacy.

For an expanding Thurston map, by the results in [DPTUZ21], we have the following proposition,
which gives a semi-conjugacy with the one-sided shift map.
Proposition 7.3. Let f and d satisfy the Assumptions in Section 4. Let σ : Σ → Σ be the one-sided
shift map on deg f symbols. Then there exists a semi-conjugacy π : Σ → S2 with π ◦ σ = f ◦ π
satisfying the following properties:

(i) For each Hölder continuous function ϕ : S2 → R with respect to the metric d, the function
ϕ ◦ π : Σ → R is Hölder continuous with respect to the standard metric on Σ.

(ii) For each Hölder continuous function ϕ : S2 → R with respect to the metric d, P (f, ϕ) =
P (σ, ϕ ◦ π).
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(iii) Let µ̃ ∈ M(Σ, σ) be an equilibrium state for the map σ and the potential ϕ ◦ π. Denote
µ := π∗µ̃. Then hµ(f) = hµ̃(σ).

Recall that the standard metric on the shift space Σ is given by ρ(ξ, η) := 2−min{i∈N0:ξi ̸=ηi} for
distinct sequences ξ = {ξi}i∈N0 and η = {ηi}i∈N0 in Σ.

Proposition 7.3 (i) follows immediately from [DPTUZ21, Lemmma 5.4]. Proposition 7.3 (ii) and
(iii) was established in the proof of [DPTUZ21, Proposition 5.5].

The following lemma shows that one can “lift” invariant measures by a semi-conjugacy, whose
proof is verbatim the same as that of [DPTUZ21, Lemma 4.1].

Lemma 7.4. Let X and X̃ be compact metrizable topological spaces, and T : X → X and T̃ : X̃ → X̃

be continuous maps. Suppose that T is a factor of T̃ and π : T̃ → T is a semi-conjugacy with
π ◦ T̃ = T ◦ π. Then for each µ ∈ M(X,T ), there exists µ̃ ∈ M(X̃, T̃ ) such that π∗µ̃ = µ.

We now prove the uniqueness of the minimizer.

Theorem 7.5. Let f , d, ϕ, µϕ satisfy the Assumptions in Section 4. Then µϕ is the unique minimizer
of the rate function Iϕ defined in (1.4).

Proof. It follows immediately from (1.4) and (1.5) that Iϕ(µϕ) = 0, i.e., µϕ is a minimizer of Iϕ. It
suffices to show the uniqueness.

Suppose that µ∗ ∈ P(S2) is a minimizer of Iϕ, i.e., Iϕ(µ∗) = 0. Then by (1.4) and (1.5), there
exists a sequence {µn}n∈N of f -invariant Borel probability measures that converges to µ∗ in the
weak∗-topology with Fϕ(µn) → 0 as n → +∞. In particular, this implies µ∗ ∈ M(S2, f) and
limn→+∞ hµn(f) = P (f, ϕ)−

∫
S2 ϕ dµ∗ by (1.5).

Let σ : Σ → Σ be the one-sided shift map on deg f symbols and π : Σ → S2 be the semi-conjugacy
given by Proposition 7.3. Then by Lemma 7.4, there exists a sequence {µ̃n}n∈N of σ-invariant
Borel probability measures on Σ such that π∗µ̃n = µn for each n ∈ N. Since the space M(Σ, σ) is
sequentially compact (in the weak∗-topology), the sequence {µ̃n}n∈N has a convergent subsequence.
Without loss of generality we may assume that the sequence {µ̃n}n∈N itself converges to µ̃∗ ∈ M(Σ, σ)

in the weak∗-topology. Then we have µn = π∗µ̃n
w∗
−→ π∗µ̃∗ as n → +∞. This implies π∗µ̃∗ = µ∗

since µn
w∗
−→ µ∗ as n→ +∞.

We now show that µ̃∗ is an equilibrium state for the shift map σ and the potential ϕ ◦ π. Since
π∗µ̃∗ = µ∗, we have

∫
S2 ϕ dµ∗ =

∫
Σ ϕ ◦ π dµ̃∗. Noting that for each n ∈ N, the dynamical system

(S2, f, µn) is a factor of (Σ, σ, µ̃n), we have hµn(f) ⩽ hµ̃n(σ) (see for example, [KH95, Proposi-
tion 4.3.16 (1)]). For the shift map σ, it is a classical result that the entropy map of σ is upper semi-
continuous (see for example, [Wal82, Theorem 8.2]). This implies hµ̃∗(σ) ⩾ lim supn→+∞ hµ̃n(σ) ⩾
lim supn→+∞ hµn(f). Hence by the Variational principle, we have

P (σ, ϕ ◦ π) ⩾ hµ̃∗(σ) +

∫
Σ
ϕ ◦ π dµ̃∗ ⩾ lim sup

n→+∞
hµn(f) +

∫
S2

ϕ dµ∗.

Since limn→+∞ hµn(f) = P (f, ϕ)−
∫
S2 ϕ dµ∗ (see the beginning of the proof), we deduce that

P (σ, ϕ ◦ π) ⩾ hµ̃∗(σ) +

∫
Σ
ϕ ◦ π dµ̃∗ ⩾ P (f, ϕ).

By Proposition 7.3 (ii), P (f, ϕ) = P (σ, ϕ ◦ π). Thus, µ̃∗ is an equilibrium state for the shift map σ
and the potential ϕ ◦ π.

Finally, since µ∗ = π∗µ̃∗ and µ̃∗ is an equilibrium state for the shift map σ and the potential ϕ ◦π,
it follows from Proposition 7.3 (iii) that hµ∗(f) = hµ̃∗(σ). Therefore, we have

hµ∗(f) +

∫
S2

ϕ dµ∗ = hµ̃∗(σ) +

∫
Σ
ϕ ◦ π dµ̃∗ = P (σ, ϕ ◦ π) = P (f, ϕ),

i.e., µ∗ is an equilibrium state for the map f and the potential ϕ. This implies µ∗ = µϕ by the
uniqueness of the equilibrium state (see Theorem 3.10 (i)). The proof is complete. □
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7.3. Characterizations of topological pressures. In this subsection, we characterize the topo-
logical pressure in terms of periodic points and iterated preimages.

Lemma 7.6. Let f and C satisfy the Assumptions in Section 4. Let nf ∈ N be the constant from
Definition 3.20, which depends only on f and C. Consider arbitrary integer m ⩾ nf , integer n ∈ N0,
point x ∈ S2, and n-tile Xn ∈ Xn(f, C). Then the following statements hold:

(i) If Xn ⊆ X0
c for some c ∈ {b,w}, then there exists a fixed point of fn+m in inte(Xn).

(ii) There exists a preimage of x under fn+m in inte(Xn).

Proof. Let integer m ⩾ nf , n ∈ N0, and Xn ∈ Xn(f, C) be arbitrary. Since f ∈ Sub(f, C) is
strongly primitive, by Lemma 3.22, for each c′ ∈ {b,w} there exists Xn+m

c′ ∈ Xn+m
c′ (f, C) such that

Xn+m
c′ ⊆ inte(Xn).
(i) Suppose that Xn ⊆ X0

c for some c ∈ {b,w}. By Proposition 3.2 (i), fn+m|Xn+m
c

is a home-
omorphism of Xn+m

c onto X0
c . Note that Xn+m

c ⊆ inte(Xn) ⊆ X0
c . Then by applying Brouwer’s

Fixed Point Theorem (see for example, [Hat02, Theorem 1.9]) to the inverse of fn+m restricted to
Xn+m

c , we get a fixed point x ∈ Xn+m
c ⊆ inte(Xn) of fn+m.

(ii) SinceXn+m
b ∪Xn+m

w ⊆ inte(Xn), it follows from Proposition 3.2 (i) that x ∈ S2 = fn+m(Xn+m
b )∪

fn+m(Xn+m
b ) ⊆ fn+m(inte(Xn)). This implies that there exists y ∈ f−n−m(x) such that y ∈

inte(Xn). □

We recall the following characterizations of topological pressure in terms of periodic points and
iterated preimages (see [Li15, Propositions 6.8 and 6.7], respectively).

Proposition 7.7 (Z. Li [Li15]). Let f , d, ϕ satisfy the Assumptions in Section 4. Fix an arbitrary
sequence {wn}n∈N of real-valued functions on S2 satisfying wn(x) ∈

[
1, degfn(x)

]
for each n ∈ N and

each x ∈ S2. Then
P (f, ϕ) = lim

n→+∞

1

n
log

∑
x∈Pern(f)

wn(x) exp(Snϕ(x)).

Proposition 7.8 (Z. Li [Li15]). Let f , d, ϕ satisfy the Assumptions in Section 4. Then for each
sequence {xn}n∈N in S2, we have

P (f, ϕ) = lim
n→+∞

1

n
log

∑
y∈f−n(xn)

degfn(y) exp(Snϕ(y)).

If we also assume that f has no periodic critical points, then for an arbitrary sequence {wn}n∈N of
real-valued functions on S2 satisfying wn(x) ∈

[
1,degfn(x)

]
for each n ∈ N and each x ∈ S2, we

have
P (f, ϕ) = lim

n→+∞

1

n
log

∑
y∈f−n(xn)

wn(y) exp(Snϕ(y)).

We now prove a generalization of Proposition 7.8 by removing the assumption on periodic critical
points.

Proposition 7.9. Let f , d, ϕ satisfy the Assumptions in Section 4. Fix an arbitrary sequence
{wn}n∈N of real-valued functions on S2 satisfying wn(x) ∈

[
1,degfn(x)

]
for each n ∈ N and each

x ∈ S2. Then for each sequence {xn}n∈N in S2, we have

P (f, ϕ) = lim
n→+∞

1

n
log

∑
y∈f−n(xn)

wn(y) exp(Snϕ(y)).

Proof. By Proposition 7.8, it suffices to show that

(7.4) lim
n→+∞

1

n

∑
y∈f−n(xn)

degfn(y) exp(Snϕ)(y) ⩽ lim inf
m→+∞

1

m

∑
ŷ∈f−m(xm)

exp(Smϕ(ŷ)).
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We fix a Jordan curve C ⊆ S2 that satisfies the Assumptions in Section 4. Suppose that ϕ ∈
C0,β(S2, d) is a real-valued Hölder continuous function with exponent β ∈ (0, 1].

Let N := nf ∈ N be the constant from Definition 3.20, which depends only on f and C. For each
n ∈ N and each Xn ∈ Xn(f, C), it follows from Lemma 7.6 (ii) that there exists a preimage of xn+N
under fn+N in inte(Xn). We fix a preimage of of xn+N under fn+N in inte(Xn) and denote it by
ŷ(Xn). Then for each n ∈ N, the map Xn 7→ ŷ(Xn) from Xn(f, C) to f−n−N (xn+N ) is injective.

For each n ∈ N and each y ∈ f−n(xn), let Xn(y) ∈ Xn(f, C) be an n-tile that contains y. By
Proposition 3.2 (i), for each n ∈ N and each Xn ∈ Xn(f, C), fn|Xn is a homeomorphism of Xn

onto fn(Xn). This implies that for each integer n ∈ N, the map y 7→ ŷ(Xn(y)) from f−n(xn) to
f−n−N (xn+N ) is injective, where ŷ(Xn(y)) ∈ inte(Xn(y)).

Let n ∈ N be arbitrary. Consider y′ ∈ f−n(xn)∩Vn, where Vn = Vn(f, C) is the set of n-vertices.
We set Xn(f, C, y′) := {X ∈ Xn(f, C) : y′ ∈ X}. By Remark 3.4, we have Wn

(y′) =
∪
Xn(f, C, y′)

and card(Xn(f, C, y′)) = 2 degfn(y
′), where Wn(y′) is defined in (3.6) and W

n
(y′) is the closure of

Wn(y′). Note that Xn(y) /∈ Xn(f, C, y′) for every y ∈ f−n(xn) \Vn(f, C).
We now establish (7.4). By the arguments above, for each integer n ∈ N, we have∑

y∈f−n(xn)

degfn(y) exp(Snϕ(y))

⩽
∑

y′∈f−n(xn)∩Vn

degfn(y
′) exp(Snϕ(y

′)) +
∑

y∈f−n(xn)\Vn

exp(Snϕ(y))

⩽
∑

y′∈f−n(xn)∩Vn

∑
Xn∈Xn(f,C,y′)

eDn(ϕ)+Snϕ(ŷ(X
n)) +

∑
y∈f−n(xn)\Vn

eDn(ϕ)+Snϕ(ŷ(X
n(y)))

⩽ eDn(ϕ)
∑

ŷ∈f−n−N (xn+N )

exp(Snϕ(ŷ))

⩽ eDn(ϕ)eN∥ϕ∥∞
∑

ŷ∈f−n−N (xn+N )

exp(Sn+Nϕ(ŷ)).

Then by Lemma 3.9, we get
1

n
log

∑
y∈f−n(xn)

degfn(y) exp(Snϕ(y)) ⩽
C

n
+

1

n
log

∑
ŷ∈f−n−N (xn+N )

exp(Snϕ(ŷ)),

where C := N∥ϕ∥∞ + C1(diamd(S
2))β and C1 ⩾ 0 is the constant defined in (3.10) in Lemma 3.9

and depends only on f , C, d, ϕ, and β. Letting n→ +∞ yields the desired inequality. □

7.4. Large deviation lower bound. This subsection is devoted to the proof of the lower bound
(7.1) for all open sets, with the main result being Proposition 7.10. In Section 7.4.1 we show that
the proof of the lower bound can be reduced to the case where the invariant measure in question
is ergodic. In Section 7.4.2 we prove lower bounds for certain fundamental open subsets of P(S2),
where we apply Lemma 6.2 to approximate each ergodic measure with a collection of tiles. Finally,
in Section 7.4.3 we establish Proposition 7.10.

Proposition 7.10. Let f , d, ϕ satisfy the Assumptions in Section 4. Then for each sequence
{ξn}n∈N ∈

{
{Σn}n∈N, {Ωn}n∈N, {Ωn(xn)}n∈N

}
(as defined in Theorem 1.3), we have

lim inf
n→+∞

1

n
log ξn(G) ⩾ − inf

G
Iϕ for all open G ⊆ P(S2),

where Iϕ : P(S2) → [0,+∞] is defined in (1.4).

7.4.1. Reduction to ergodic measures. A weaker property related to entropy density (defined in Sub-
section 1.1) is entropy approachablility (see Definition 7.11). Entropy approachablility is a useful
property in theories such as multifractal analysis and large deviations in which all invariant measures
come into play, in order to reduce one’s consideration to ergodic measures only.
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Definition 7.11. Let (X, d) be a compact metric space and T : X → X be a continuous map. We
say that a measure µ ∈ M(S2, f) is entropy-approachable by ergodic measures if for each ε > 0 and
each weak∗-open set U containing µ there exists an ergodic measure ν ∈ U ∩ M(X,T ) such that
hν(T ) > hµ(T )− ε.

Remark 7.12. It is clear that if ergodic measures are entropy-dense, then any invariant measure is
entropy-approachable by ergodic measures. One sees that these two notions are equivalent when the
entropy map is upper semi-continuous.

It follows immediately from Theorem 1.2 and Remark 7.12 that for expanding Thurston maps,
any invariant measure is entropy-approachable by ergodic measures.

Corollary 7.13. For an expanding Thurston map f : S2 → S2, any invariant measure µ ∈ M(S2, f)
is entropy-approachable by ergodic measures.

Remark 7.14. For a continuous map T : X → X on a compact metric space (X, d), it is known that
if T has the specification property in the sense of K. Sigmund (see the definition in [Sig74, Section 2]),
then any invariant measure is entropy-approachable by ergodic measures (see for example, [EKW94]
and [PS05, Theorem 2.1]). In particular, this result applies to expanding Thurston maps since every
expanding Thurston map has the specification property (see the proof of [LZ24, Lemma 6.5]).

7.4.2. Lower bound for fundamental open sets. We use the notations as introduced in the beginning
of Section 6.

We first prove the following result under the additional assumption that there exists an f -invariant
Jordan curve C ⊆ S2 with post f ⊆ C and then for the general case.

Proposition 7.15. Let f , d, ϕ, β satisfy the Assumptions in Section 4. Consider ℓ ∈ N, φ⃗ ∈ C(S2)ℓ,
and α⃗ ∈ Rℓ. Let G ⊆ P(S2) be an open set of the form

G :=

{
µ ∈ P(S2) :

∫
φ⃗dµ > α⃗

}
.

Then for each µ ∈ G and each sequence {ξn}n∈N ∈
{
{Σn}n∈N, {Ωn}n∈N, {Ωn(xn)}n∈N

}
(as defined in

Theorem 1.3), we have
lim inf
n→+∞

1

n
log ξn(G) ⩾ Fϕ(µ),

where Fϕ : P(S2) → [−∞, 0] is defined in (1.5).

Proof of Proposition 7.15 under an additional assumption. We assume in addition that there exists
an f -invariant Jordan curve C ⊆ S2 with post f ⊆ C.

Let µ ∈ G be arbitrary. We may assume without loss of generality that µ ∈ M(S2, f) since
Fϕ(µ) = −∞ when µ /∈ M(S2, f). Moreover, by virtue of Corollary 7.13 and the definition of Fϕ,
we may assume that µ is ergodic.

Let ε > 0 be such that

(7.5)
∫
φ⃗dµ > α⃗+ ε.

By Lemma 6.2, there exists n0 ∈ N such that for each integer n ⩾ n0, there exists a non-empty
subset Tn of Xn(f, C) such that∣∣∣∣ 1n log card(Tn)− hµ(f)

∣∣∣∣ ⩽ ε

2
,(7.6)

sup
x∈

∪
Tn

∥∥∥∥ 1nSnφ⃗(x)−
∫
φ⃗dµ

∥∥∥∥ ⩽ ε

2
, and(7.7)

sup
x∈

∪
Tn

∣∣∣∣ 1nSnϕ(x)−
∫
ϕ dµ

∣∣∣∣ ⩽ ε

2
.(7.8)

We split the rest of the proof into three cases according to the type of the sequence {ξn}n∈N.
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Case 1 (Birkhoff averages): ξn = Σn = (Vn)∗(µϕ) for each n ∈ N (recall (1.1)).
For each integer n ⩾ n0, (7.5) and (7.7) yield

(7.9)
{
Vn(x) : x ∈

∪
Tn
}
⊆ G.

Recall from Proposition 3.11 that µϕ is a Gibbs measure with respect to f , C, and ϕ, with the
constants Pµϕ = P (f, ϕ) and Cµϕ ⩾ 1. Then for each integer n ⩾ n0 and each Xn ∈ Tn, it follows
from (3.11) in Proposition 3.11 and (7.8) that

µϕ(X
n) ⩾ C−1

µϕ
e−nP (f,ϕ) inf

x∈Xn
exp(Snϕ(x)) ⩾ C−1

µϕ
e−nP (f,ϕ) exp

(
n

(∫
ϕ dµ− ε

2

))
.

Summing this inequality over all Xn ∈ Tn and applying (7.9), Theorem 3.10 (ii), and (7.6), we have

1

n
log Σn(G) =

1

n
logµϕ({x ∈ S2 : Vn(x) ∈ G})

⩾ 1

n
logµϕ

(∪
Tn
)

⩾ 1

n
log
(
card(Tn) inf

Xn∈Tn
µϕ(X

n)
)

⩾ hµ(f)−
ε

2
+

∫
ϕ dµ− ε

2
− P (f, ϕ)− 1

n
logCµϕ

= Fϕ(µ)− ε− 1

n
logCµϕ .

Letting n→ +∞ and then ε→ 0 yields the desired inequality.
Case 2 (Periodic points): ξn = Ωn for each n ∈ N (recall (1.2)).
By Proposition 3.8 and Lemma 7.6 (i), there exists a constant N ∈ N depending only on f and C

such that for each n ∈ N0 and each Xn ∈ Xn(f, C), there exists a fixed point of fn+N in inte(Xn).
For each n ∈ N0 and each Xn ∈ Xn(f, C), let p(Xn) be a fixed point of fn+N in inte(Xn). Then the
map Xn 7→ p(Xn) from Xn(f, C) to Pern+N (f) is injective.

By (7.5) and (7.7), for each integer n ⩾ n0 and each x ∈
∪
Tn, we have

Sn+N φ⃗(x) ⩾ Snφ⃗(x)−N∥φ⃗∥ > nα⃗+
ε

2
n−N∥φ⃗∥ ⩾ (n+N)α⃗+

ε

2
n−N(∥φ⃗∥+ ∥α⃗∥).

This implies that for each sufficiently large n ∈ N and each x ∈
∪
Tn, (n+N)−1Sn+N φ⃗(x) > α⃗, i.e.,

Vn+N (x) ∈ G. Therefore, it follows from (7.6) and (7.8) that for each sufficiently large n ∈ N,∑
p∈Pern+N (f)
Vn+N (p)∈G

wn+N (p) exp(Sn+Nϕ(p)) ⩾
∑

Xn∈Tn
exp(Sn+Nϕ(p(X

n)))

⩾ card(Tn) inf
x∈

∪
Tn

exp(Snϕ(x)) exp(−N∥ϕ∥∞)

⩾ exp(Fϕ(µ)n+ P (f, ϕ)n− εn−N∥ϕ∥∞),

(7.10)

where {wj}j∈N is an arbitrary sequence of real-valued functions on S2 with wj(x) ∈
[
1,degfj (x)

]
for

each j ∈ N and each x ∈ S2. By (1.2), for each n ∈ N,

1

n+N
log Ωn+N (G) = − 1

n+N
log

∑
p′∈Pern+N (f)

wn+N (p
′) exp(Snϕ(p

′))

+
1

n+N
log

∑
p∈Pern+N (f)
Vn+N (x)∈G

wn+N (p) exp(Sn+Nϕ(p)).
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Note that as n → +∞, the first term of the right hand side in the equation above converges to
−P (f, ϕ) by Proposition 7.7. Combining this with (7.10), we get

lim inf
n→+∞

1

n
log Ωn(G) = lim inf

n→+∞

1

n+N
log Ωn+N (G) ⩾ Fϕ(µ)− ε.

Then by letting ε→ 0, the desired inequality follows.
Case 3 (Iterated preimages): ξn = Ωn(xn) for each n ∈ N (recall (1.3)), where {xn}n∈N is an

arbitrary sequence of points in S2.
By Lemma 7.6 (ii), there exists a constant N ∈ N depending only on f and C such that for each

n ∈ N0 and each Xn ∈ Xn(f, C), there exists x ∈ f−n−N (xn+N ) such that x ∈ inte(Xn). For
each n ∈ N0 and each Xn ∈ Xn(f, C), let xXn be a preimage point of xn+N under fn+N such that
xXn ∈ inte(Xn). Then the map Xn 7→ xXn from Xn(f, C) to f−n−N (xn+N ) is injective.

By the same reasoning as in Case 2, we have Vn+N (x) ∈ G for each sufficiently large n ∈ N and
each x ∈

∪
Tn. Similarly, it follows from (7.6) and (7.8) that for each sufficiently large n ∈ N,∑

y∈f−n−N (xn+N )
Vn+N (p)∈G

wn+N (y) exp(Sn+Nϕ(y)) ⩾
∑

Xn∈Tn
exp(Sn+Nϕ(xXn))

⩾ card(Tn) inf
x∈

∪
Tn

exp(Snϕ(x)) exp(−N∥ϕ∥∞)

⩾ exp(Fϕ(µ)n+ P (f, ϕ)n− εn−N∥ϕ∥∞),

(7.11)

where {wj}j∈N is an arbitrary sequence of real-valued functions on S2 with wj(x) ∈
[
1,degfj (x)

]
for

each j ∈ N and each x ∈ S2. By (1.3), for each n ∈ N,
1

n+N
log Ωn+N (xn+N )(G) = − 1

n+N
log

∑
z∈f−n−N (xn+N )

wn+N (z) exp(Snϕ(z))

+
1

n+N
log

∑
y∈f−n−N (xn+N )

Vn+N (p)∈G

wn+N (y) exp(Sn+Nϕ(y)).

Note that as n → +∞, the first term of the right hand side in the equation above converges to
−P (f, ϕ) by Proposition 7.9. Combining this with (7.11), we get

lim inf
n→+∞

1

n
log Ωn(xn)(G) = lim inf

n→+∞

1

n+N
log Ωn+N (xn+N )(G) ⩾ Fϕ(µ)− ε.

Then by letting ε→ 0, the desired inequality follows.
The proof is complete. □

We now prove the general case.

Proof of Proposition 7.15. Let µ ∈ G be arbitrary. We may assume without loss of generality that
µ ∈ M(S2, f) since Fϕ(µ) = −∞ when µ /∈ M(S2, f).

By Lemma 3.7, we can find a sufficiently high iterate f̂ := fK of f that has an f̂ -invariant Jordan
curve C ⊆ S2 with post f̂ = post f ⊆ C. Then f̂ is also an expanding Thurston map.

Denote Φ⃗ := SfKφ⃗ and ϕ̂ := SfKϕ. We define F̂
ϕ̂
: P(S2) → [−∞, 0] by

F̂
ϕ̂
(ν) :=

{
hν(f̂) +

∫
ϕ̂ dν − P (f̂ , ϕ̂) if ν ∈ M(S2, f̂);

−∞ if ν ∈ P(S2) \M(S2, f̂).

Note that P (f̂ , ϕ̂) = KP (f, ϕ), hµ(f̂) = Khµ(f), and
∫
ϕ̂ dµ = K

∫
ϕ dµ (see Subsection 3.1). Then

we have F̂
ϕ̂
(µ) = KFϕ(µ) since µ ∈ M(S2, f) ⊆ M(S2, f̂). Let µ̂

ϕ̂
be the unique equilibrium state

for the map f̂ and the potential ϕ̂. Since Pµϕ(f̂ , ϕ̂) = KPµϕ(f, ϕ) = KP (f, ϕ) = P (f̂ , ϕ̂), it follows
from the uniqueness of the equilibrium state that µ̂

ϕ̂
= µϕ.
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Let ε > 0 be such that
∫
φ⃗dµ > α⃗+ε. This implies

∫
Φ⃗ dµ = K

∫
φ⃗dµ > Kα⃗+Kε. Let Ĝε ⊆ P(S2)

be the open set defined by

Ĝε :=
{
ν ∈ P(S2) :

∫
Φ⃗ dν > Kα⃗+Kε

}
.

Then we have µ ∈ Ĝε.
We split the proof into three cases according to the type of the sequence {ξn}n∈N.

Case 1 (Birkhoff averages): ξn = Σn = (Vn)∗(µϕ) for each n ∈ N (recall (1.1)).

For each integer k ∈ {0, . . . , K − 1} and each integer m ∈ N that satisfies (∥α⃗∥+ ∥φ⃗∥)/m < ε, we
have {

x ∈ S2 : SfmK+kφ⃗(x) > (mK + k)α⃗
}
⊇
{
x ∈ S2 : SfmKφ⃗(x) > (mK + k)α⃗+ k∥φ⃗∥

}
⊇
{
x ∈ S2 : SfmKφ⃗(x) > mKα⃗+K(∥α⃗∥+ ∥φ⃗∥)

}
⊇
{
x ∈ S2 : m−1S f̂mΦ⃗(x) > Kα⃗+Kε

}
.

For each n ∈ N, we set m := ⌊n/K⌋ and write n = mK + k for some integer k ∈ {0, . . . , K − 1}.
Then for each sufficiently large n ∈ N, we have

log Σn(G) = log µϕ
({
x ∈ S2 : Sfnφ⃗(x) > nα⃗

})
⩾ log µ̂

ϕ̂

({
x ∈ S2 : m−1S f̂mΦ⃗(x) > Kα⃗+Kε

})
= log Σ̂m(Ĝε) ⩾

n

mK
log Σ̂m(Ĝε),

where
{
Σ̂j
}
j∈N is defined by replacing f with f̂ and ϕ with ϕ̂ in the definition of {Σj}j∈N. Since f̂

has an f̂ -invariant Jordan curve C ⊆ S2 with post f̂ ⊆ C, Proposition 7.15 holds for f̂ . Therefore,

lim inf
n→+∞

1

n
log Σn(G) ⩾

1

K
lim inf
m→+∞

1

m
log Σ̂m(Ĝε) ⩾

1

K
F̂
ϕ̂
(µ) = Fϕ(µ).

Case 2 (Periodic points): ξn = Ωn for each n ∈ N (recall (1.2)).

For each m ∈ N, it follows from Proposition 3.2 (iv) that Xm(f̂ , C) = XmK(f, C). Since f̂(C) ⊆ C,
by Proposition 3.8 and Lemma 7.6 (i), there exists a constant N ∈ N depending only on f and C
such that for each integer ℓ ⩾ N , each m ∈ N, and each XmK ∈ XmK(f, C), there exists a fixed point
of fmK+ℓ in inte(XmK).

For each m ∈ N, each k ∈ {0, . . . , K − 1}, and each p̂ ∈ Perm(f̂), let XmK(p̂) ∈ XmK(f, C) be
an mK-tile that contains p̂ and let p(k, p̂) be a fixed point of fmK+k+N in inte(XmK(p̂)). By [Li15,
Lemma 6.3], there exists N0 ∈ N such that for each integer n ⩾ N0 and each n-tile Xn ∈ Xn(f, C),
the number of fixed points of fn contained in Xn is at most 1. This implies that for each integer
m ⩾ N0/K and each k ∈ {0, . . . , K − 1}, the map p̂ 7→ p(k, p̂) from Perm(f̂) to PermK+k+N (f) is
injective.

We claim that there exists n0 ∈ N such that for each integer m ⩾ n0, each k ∈ {0, . . . , K − 1},
and each p̂ ∈ Perm(f̂) with V̂m(p̂) ∈ Ĝε, it follows that VmK+k+N (p(k, p̂)) ∈ G, where we define
V̂ℓ(x) := 1

ℓ

∑ℓ−1
i=0 δf̂ i(x) for each ℓ ∈ N and each x ∈ S2. Indeed, by Lemma 6.1, there exists a

sufficiently large n0 ∈ N such that for each integer m ⩾ n0,

DmK(φ⃗) + (K +N)(∥α⃗∥+ ∥φ⃗∥) ⩽ mKε.
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Since XmK(p̂) contains p̂ and p(k, p̂), we have SfmKφ⃗(p(k, p̂)) ⩾ SfmKφ⃗(p̂) − DmK(φ⃗). Note that
V̂m(p̂) ∈ Ĝε means that m−1S f̂mΦ⃗(p̂) = m−1SfmKφ⃗(p̂) > Kα⃗+Kε. Therefore,

SfmK+k+N φ⃗(p(k, p̂)) ⩾ SfmKφ⃗(p(k, p̂))− (K +N)∥φ⃗∥

⩾ SfmKφ⃗(p̂)−DmK(φ⃗)− (K +N)∥φ⃗∥
> mKα⃗+mKε−DmK(φ⃗)− (K +N)∥φ⃗∥
⩾ (mK + k +N)α⃗+mKε−DmK(φ⃗)− (K +N)(∥α⃗∥+ ∥φ⃗∥)
⩾ (mK + k +N)α⃗.

This implies VmK+k+N (p(k, p̂)) ∈ G.
We now prove the lower bound.
For each integer n ⩾ N , we set m := ⌊(n − N)/K⌋ and write n = mK + k + N for some

integer k ∈ {0, . . . , K − 1}. By the arguments above, for each sufficiently large n ∈ N that satisfies
m ⩾ max{N0/K, n0}, we have∑

p∈Pern(f)
Vn(p)∈G

wn(p) exp
(
Sfnϕ(p)

)
⩾

∑
p∈PermK+k+N (f)
VmK+k+N (p)∈G

exp
(
SfmK+k+Nϕ(p)

)

⩾
∑

p̂∈Perm(f̂)

V̂m(p̂)∈Ĝε

exp
(
SfmK+k+Nϕ(p(k, p̂))

)
,

where {wj}j∈N is an arbitrary sequence of real-valued functions on S2 with wj(x) ∈
[
1, degfj (x)

]
for

each j ∈ N and each x ∈ S2. Then by Lemma 3.9,∑
p∈Pern(f)
Vn(p)∈G

wn(p) exp
(
Sfnϕ(p)

)
⩾ e−(K+N)∥ϕ∥∞

∑
p̂∈Perm(f̂)

V̂m(p̂)∈Ĝε

exp
(
SfmKϕ(p(k, p̂))

)

⩾ e−C
∑

p̂∈Perm(f̂)

V̂m(p̂)∈Ĝε

exp
(
SfmKϕ(p̂)

)
= e−C

∑
p̂∈Perm(f̂)

V̂m(p̂)∈Ĝε

exp
(
S f̂mϕ̂(p̂)

)
,

where C := (K+N)∥ϕ∥∞+C1(diamd(S
2))β and C1 ⩾ 0 is the constant defined in (3.10) in Lemma 3.9

that depends only on f , C, d, ϕ, and β. Thus by (1.2), we have

log Ωn(G) = log
∑

p∈Pern(f)
Vn(p)∈G

wn(p) exp
(
Sfnϕ(p)

)
− log

∑
p′∈Pern(f)

wn(p
′) exp

(
Sfnϕ(p

′)
)

⩾ log
∑

p̂∈Perm(f̂)

V̂m(p̂)∈Ĝε

exp
(
S f̂mϕ̂(p̂)

)
− log

∑
p′∈Pern(f)

wn(p
′) exp

(
Sfnϕ(p

′)
)
− C

= log Ω̂m(Ĝε) + log
∑

p̂′∈Perm(f̂)

exp
(
S f̂mϕ̂(p̂

′)
)
− log

∑
p′∈Pern(f)

wn(p
′) exp

(
Sfnϕ(p

′)
)
− C,

where
{
Ω̂j
}
j∈N is defined by setting wj(x) = 1 for each j ∈ N and each x ∈ S2 and replacing f with

f̂ and ϕ with ϕ̂ in the definition of {Ωj}j∈N (recall (1.2)). Since f̂ has an f̂ -invariant Jordan curve
C ⊆ S2 with post f̂ ⊆ C, Proposition 7.15 holds for f̂ . Therefore, by Proposition 7.7, we get

lim inf
n→+∞

1

n
log Ωn(G) ⩾

1

K
lim inf
m→+∞

1

m
log Ω̂m(Ĝε) +

1

K
P (f̂ , ϕ̂)− P (f, ϕ)

=
1

K
lim inf
m→+∞

1

m
log Ω̂m(Ĝε) ⩾

1

K
F̂
ϕ̂
(µ) = Fϕ(µ).
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Case 3 (Iterated preimages): ξn = Ωn(xn) for each n ∈ N (recall (1.3)), where {xn}n∈N is an
arbitrary sequence of points in S2.

By Lemma 7.6 (ii), there exists a constant N ∈ N depending only on f and C such that for each
integer ℓ ⩾ N , each m ∈ N, and each XmK ∈ XmK(f, C), there exists a preimage of xmK+ℓ under
fmK+ℓ in inte(XmK).

We fix a point x0 ∈ S2 \ post f . Note that degfn(y) = 1 for each n ∈ N and each y ∈ f−n(x0).
For each m ∈ N, each k ∈ {0, . . . , K − 1}, and each ŷ ∈ f̂−m(x0), let XmK(ŷ) ∈ XmK(f, C) be an

mK-tile that contains ŷ and let y(k, ŷ) be a preimage of xmK+k+N under fmK+k+N in inte(XmK(ŷ)).
By Proposition 3.2 (i), for each n ∈ N and each Xn ∈ Xn(f, C), fn|Xn is a homeomorphism of Xn

onto fn(Xn). This implies that for each m ∈ N and each k ∈ {0, . . . , K − 1}, the map ŷ 7→ y(k, ŷ)

from f̂−m(x0) to f−mK−k−N (xmK+k+N ) is injective.
By the same reasoning as in Case 2, there exists n0 ∈ N such that for each integer m ⩾ n0, each

k ∈ {0, . . . , K − 1}, and each ŷ ∈ f̂−m(x0) with V̂m(ŷ) ∈ Ĝε, it follows that VmK+k+N (y(k, ŷ)) ∈ G.
We now prove the lower bound. The proof is essentially the same as in Case 2, and we retain this

proof for the convenience of the reader.
For each integer n ⩾ N , we set m := ⌊(n −N)/K⌋ and write n = mK + k +N for some integer

k ∈ {0, . . . , K − 1}. By the arguments above, for each sufficiently large n ∈ N that satisfies m ⩾ n0,
we have ∑

y∈f−n(xn)
Vn(y)∈G

wn(y) exp
(
Sfnϕ(y)

)
⩾

∑
y∈f−mK−k−N (xmK+k+N )

VmK+k+N (y)∈G

exp
(
SfmK+k+Nϕ(y)

)

⩾
∑

ŷ∈f̂−m(x0)

V̂m(ŷ)∈Ĝε

exp
(
SfmK+k+Nϕ(y(k, ŷ))

)
,

where {wj}j∈N is an arbitrary sequence of real-valued functions on S2 with wj(x) ∈
[
1, degfj (x)

]
for

each j ∈ N and each x ∈ S2. Then by Lemma 3.9,∑
y∈f−n(xn)
Vn(y)∈G

wn(y) exp
(
Sfnϕ(y)

)
⩾ e−(K+N)∥ϕ∥∞

∑
ŷ∈f̂−m(x0)

V̂m(ŷ)∈Ĝε

exp
(
SfmKϕ(y(k, ŷ))

)

⩾ e−C
∑

ŷ∈f̂−m(x0)

V̂m(ŷ)∈Ĝε

exp
(
SfmKϕ(ŷ)

)
= e−C

∑
ŷ∈f̂−m(x0)

V̂m(ŷ)∈Ĝε

exp
(
S f̂mϕ̂(ŷ)

)
,

where the constant C is the same as in Case 2. Thus by (1.3), we have

log Ωn(xn)(G)

= log
∑

y∈f−n(xn)
Vn(y)∈G

wn(y) exp
(
Sfnϕ(y)

)
− log

∑
y′∈f−n(xn)

wn(y
′) exp

(
Sfnϕ(y

′)
)

⩾ log
∑

ŷ∈f̂−m(x0)

V̂m(ŷ)∈Ĝε

exp
(
S f̂mϕ̂(ŷ)

)
− log

∑
y′∈f−n(xn)

wn(y
′) exp

(
Sfnϕ(y

′)
)
− C

= log Ω̂m(x0)(Ĝε) + log
∑

ŷ′∈f̂−m(x0)

exp
(
S f̂mϕ̂(ŷ

′)
)
− log

∑
y′∈f−n(xn)

wn(y
′) exp

(
Sfnϕ(y

′)
)
− C,

where
{
Ω̂j(x0)

}
j∈N is defined by setting wj = 1S2 and xj = x0 for each j ∈ N and replacing f with f̂

and ϕ with ϕ̂ in the definition of {Ωj(xj)}j∈N (recall (1.3)). Since f̂ has an f̂ -invariant Jordan curve
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C ⊆ S2 with post f̂ ⊆ C, Proposition 7.15 holds for f̂ . Therefore, by Proposition 7.9, we get

lim inf
n→+∞

1

n
log Ωn(xn)(G) ⩾

1

K
lim inf
m→+∞

1

m
log Ω̂m(x0)(Ĝε) +

1

K
P (f̂ , ϕ̂)− P (f, ϕ)

=
1

K
lim inf
m→+∞

1

m
log Ω̂m(x0)(Ĝε) ⩾

1

K
F̂
ϕ̂
(µ) = Fϕ(µ).

The proof is complete. □

7.4.3. End of proof of the lower bound.

Proof of Proposition 7.10. Let G be a non-empty open subset of P(S2). Since subsets of P(S2) of
the form

{
µ ∈ P(S2) :

∫
φ⃗dµ > α⃗

}
with ℓ ∈ N, φ⃗ ∈ C(S2)ℓ, α⃗ ∈ Rℓ constitute a base of the

weak∗-topology of P(S2), we can write G as a union G =
∪
λ Gλ of sets of this form. For each Gλ, it

follows from Proposition 7.15 that

lim inf
n→+∞

1

n
log ξn(Gλ) ⩾ sup

Gλ
Fϕ,

for each sequence {ξn}n∈N ∈
{
{Σn}n∈N, {Ωn}n∈N, {Ωn(xn)}n∈N

}
. Then by Remark 1.4, we get

lim inf
n→+∞

1

n
log ξn(G) ⩾ sup

λ
sup
Gλ

Fϕ = sup
G
Fϕ = − inf

G
Iϕ

and complete the proof. □

7.5. Large deviation upper bound. In this subsection, we prove the upper bound (7.2) for all
closed sets, with the main result being Proposition 7.16. Based on a preliminary result in Sec-
tion 7.5.1, we prove upper bounds for certain fundamental closed subsets of P(S2) in Section 7.5.2.
Finally, in Section 7.5.3 we establish Proposition 7.16.

Proposition 7.16. Let f , d, ϕ satisfy the Assumptions in Section 4. Then for each sequence
{ξn}n∈N ∈

{
{Σn}n∈N, {Ωn}n∈N, {Ωn(xn)}n∈N

}
(as defined in Theorem 1.3), we have

lim sup
n→+∞

1

n
log ξn(K) ⩽ − inf

K
Iϕ for all closed K ⊆ P(S2),

where Iϕ : P(S2) → [0,+∞] is defined in (1.4).

7.5.1. Construction of suitable invariant measures. We use the notations as introduced in the begin-
ning of Section 6.

Definition 7.17. Let f , C, e0 satisfy the Assumptions in Section 4. Consider ℓ ∈ N and φ⃗ ∈ C(S2)ℓ.
For each integer n ∈ N and each α⃗ ∈ Rℓ we define

Pn(α⃗) :=
{
Pn ∈ Pn(f, C, e0) : there exists x ∈ Pn such that n−1Snφ⃗(x) ⩾ α⃗

}
.

Here Pn(f, C, e0) is the set of n-pairs (recall Definition 3.12).

Lemma 7.18. Let f , C, e0 satisfy the Assumptions in Section 4. Consider ℓ ∈ N, φ⃗ ∈ C(S2)ℓ, and
α⃗ ∈ Rℓ. Then for each n ∈ N and each x ∈

∪
Pn(α⃗) we have Snφ⃗(x) ⩾ nα⃗ − 2Dn(φ⃗). Here Dn(φ⃗)

is defined in (6.1).

Proof. Let n ∈ N and Pn = Xn
b ∪ Xn

w ∈ Pn(α⃗) be arbitrary. It suffices to show that Snφ⃗(x) ⩾
nα⃗− 2Dn(φ⃗) for each x ∈ Pn. By Definition 3.12, there exists en ∈ En(f, C) with fn(en) = e0 such
that en ⊆ Xn

b ∩Xn
w. We fix an arbitrary point xe ∈ en. By the definition of Pn(α⃗), there exists x0 ∈

Pn = Xn
b ∪Xn

w such that 1
nSnφ⃗(x0) ⩾ α⃗. Since xe ∈ Xn

b ∩Xn
w, we have Snφ⃗(xe) ⩾ Snφ⃗(x0)−Dn(φ⃗).

Then for each x ∈ Pn = Xn
b ∪Xn

w,
Snφ⃗(x) ⩾ Snφ⃗(xe)−Dn(φ⃗) ⩾ Snφ⃗(x0)− 2Dn(φ⃗) ⩾ nα⃗− 2Dn(φ⃗).

The proof is complete. □
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The following lemma is analog to [LSZ25, Proposition 7.15]. The proof is essentially the same,
and we retain this proof for the convenience of the reader.

Proposition 7.19. Let f , C, d, ϕ, β, µϕ, e0 satisfy the Assumptions in Section 4. We assume
in addition that f(C) ⊆ C. Consider n ∈ N, ℓ ∈ N, φ⃗ ∈ C(S2)ℓ, and α⃗ ∈ Rℓ. Suppose that for
each c ∈ {b,w} there exists Pnc ∈ Pn(α⃗) such that Pnc ⊆ inte

(
X0

c

)
. Then there exists a measure

µ ∈ M(S2, f) such that

∫
φ⃗dµ ⩾ α⃗− 2Dn(φ⃗)

n
and µϕ

(∪
Pn(α⃗)

)
⩽ C exp((Pµ(f, ϕ)− P (f, ϕ))n),

where Dn(φ⃗) is defined in (6.1) and C = 2Cµϕ exp
(
C1(diamd(S

2))β
)
. Here Cµϕ is the constant from

Proposition 3.11 and C1 ⩾ 0 is the constant defined in (3.10) in Lemma 3.9.

Proof. Denote Pn(α⃗) :=
∪
Pn(α⃗). Note that the subsystem F := fn|Pn(α⃗) ∈ Sub(fn, C) is strongly

primitive (recall Definition 3.20). We set FΩ := F |Ω, where Ω := Ω(F, C) is the tile maximal invariant
set associated with F with respect to C. Then it follows from Propositions 3.17 (i) and [LSZ25,
Proposition 5.20 (ii)] that F (Ω) ⊆ Ω and Ω \ C ̸= ∅.

Let y0 ∈ Ω \ C be arbitrary. By [LSZ25, Theorem 1.1 and Proposition 6.20], we have

sup
ν∈M(Ω,FΩ)

{
hν(FΩ) +

∫
Snϕ dν

}
= lim

m→+∞

1

m
log

∑
x∈F−m

Ω (y0)

exp

(m−1∑
k=0

Snϕ
(
fnk(x)

))
.(7.12)

For the summand inside the logarithm in (7.12), we have

∑
x∈F−m

Ω (y0)

exp

(m−1∑
k=0

Snϕ
(
fnk(x)

))
=

m−1∏
i=0

∑
yi+1∈F−1

Ω (yi)

exp(Snϕ(yi+1)).(7.13)

Claim. For each point y ∈ Ω \ C, we have card
(
F−1
Ω (y)

)
= card(Pn(α⃗)), and each n-pair Pn ∈

Pn(α⃗) contains exactly one preimage x ∈ F−1
Ω (y), which satisfies x ∈ Ω \ C.

To establish this Claim, we consider an arbitrary point y ∈ Ω \ C. Without loss of generality
we may assume that y ∈ inte

(
X0

b

)
. Then by Proposition 3.2, we have card(f−n(y)) = (deg f)n =

card(Xn
b ), and each black n-tile Xn

b ∈ Xn
b contains exactly one preimage x ∈ f−n(y), which satisfies

x ∈ inte(Xn
b ). Thus each n-pair Pn ∈ Pn(α⃗) contains exactly one preimage x ∈ f−n(y) ∩ Pn(α⃗),

which satisfies x ∈ inte(Pn), and we have

card(f−n(y) ∩ Pn(α⃗)) = card(Pn(α⃗)).

Let preimage x ∈ f−n(y) ∩ Pn(α⃗) be arbitrary. Noting that f−n(y) ∩ Pn(α⃗) =
(
fn|Pn(α⃗)

)−1
(y) =

F−1(y) and y ∈ Ω \ C, by Proposition 3.17 (iii), we have x ∈ Ω \ C. Since F−1
Ω (y) = f−n(y) ∩ Ω =

f−n(y) ∩ Pn(α⃗), the claim follows.

By the claim, we know that all the preimages yi in the summation in (7.13) belong to Ω \ C.
Moreover, for each point y ∈ Ω \ C, every n-pair Pn ∈ Pn(α⃗) contains exactly one preimage x ∈
F−1
Ω (y), and every preimage x ∈ F−1

Ω (y) is contained in a unique n-pair Pn ∈ Pn(α⃗). Thus by (7.13)
we get the first two inequalities of the following:
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∑
x∈F−m

Ω (y0)

exp

(m−1∑
k=0

Snϕ
(
fnk(x)

))
⩾
(

inf
y∈Ω\C

∑
x∈F−1

Ω (y)

eSnϕ(x)
)m

⩾
( ∑
Pn∈Pn(α⃗)

inf
x∈Pn

eSnϕ(x)
)m

⩾
(

eP (f,ϕ)n

2Cµϕe
C1(diamd(S2))β

∑
Pn∈Pn(α⃗)

µϕ(P
n)

)m

=

(
eP (f,ϕ)n

2Cµϕe
C1(diamd(S2))β

µϕ(P
n(α⃗))

)m
.

The last inequality follows from [LSZ25, Lemmma 7.14 (i)] and the last equality follows from
Lemma 3.13 and Theorem 3.10 (ii), where C1 ⩾ 0 is the constant defined in (3.10) in Lemma 3.9.
Taking logarithms of both sides, dividing by m, and plugging the result into the previous inequality,
we get

lim
m→+∞

1

m
log

( ∑
x∈F−m

Ω (y0)

exp
(m−1∑
k=0

Snϕ
(
fnk(x)

)))
⩾ log

(
µϕ(P

n(α⃗))
)
+ nP (f, ϕ)−

(
C1(diamd(S

2))β + log(2Cµϕ)
)
.

Plugging this inequality into (7.12) yields
(7.14)

sup
ν∈M(Ω,FΩ)

{
hν(FΩ) +

∫
Snϕ dν

}
⩾ log

(
µϕ(P

n(α⃗))
)
+ P (f, ϕ)n−

(
C1(diamd(S

2))β + log(2Cµϕ)
)
.

By Theorem 3.25, there exists an equilibrium state µ̂ ∈ M(Ω, FΩ) ⊆ M(S2, fn) that attains the
supremum in (7.14). Denote µ := 1

n

∑n−1
i=0 f

i
∗µ̂. Then µ ∈ M(S2, f) and we have∫

ϕ dµ =
1

n

∫ n−1∑
i=0

ϕ df i∗µ̂ =
1

n

∫ n−1∑
i=0

ϕ ◦ f i dµ̂ =
1

n

∫
Snϕ dµ̂.

By Lemma 7.18, we have Snφ⃗(x) ⩾ nα⃗ − 2Dn(φ⃗) for each x ∈ Pn(α⃗). Noting that supp µ̂ ⊆ Ω ⊆
Pn(α⃗), we get ∫

φ⃗dµ =
1

n

∫
Snφ⃗dµ̂ ⩾ α⃗− 2Dn(φ⃗)

n
.

By Lemma 5.2, we have nhµ(f) = hµ̂(f
n) = hµ̂(FΩ). Then

n

(
hµ(f) +

∫
ϕ dµ

)
= hµ̂(FΩ) +

∫
Snϕdµ̂

⩾ log
(
µϕ(P

n(α⃗))
)
+ nP (f, ϕ)−

(
C1(diamd(S

2))β + log(2Cµϕ)
)
,

i.e., log(µϕ(Pn(α⃗))) ⩽ n(Pµ(f, ϕ)−P (f, ϕ))+C1(diamd(S
2))β+log(2Cµϕ). The proof is complete. □

7.5.2. Upper bound for fundamental closed sets. We first prove the following result under the addi-
tional assumption that there exists an f -invariant Jordan curve C ⊆ S2 with post f ⊆ C and then for
the general case.

Proposition 7.20. Let f , C, d, ϕ, β, µϕ satisfy the Assumptions in Section 4. Consider ℓ ∈ N,
φ⃗ ∈ C(S2)ℓ, and α⃗ ∈ Rℓ. Let K ⊆ P(S2) be a non-empty closed set of the form

K :=

{
µ ∈ P(S2) :

∫
φ⃗dµ ⩾ α⃗

}
.
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Then for each ε > 0 and each sequence {ξn}n∈N ∈
{
{Σn}n∈N, {Ωn}n∈N, {Ωn(xn)}n∈N

}
(as defined in

Theorem 1.3), we have

(7.15) lim sup
n→+∞

1

n
log ξn(K) ⩽ sup

{
Fϕ(µ) : µ ∈ P(S2),

∫
φ⃗dµ > α⃗− ε

}
,

where Fϕ : P(S2) → [−∞, 0] is defined in (1.5).

Proof of Proposition 7.20 under an additional assumption. We assume in addition that there exists
an f -invariant Jordan curve C ⊆ S2 with post f ⊆ C.

Let ε > 0 and {ξn}n∈N ∈
{
{Σn}n∈N, {Ωn}n∈N, {Ωn(xn)}n∈N

}
be arbitrary. We may assume without

loss of generality that the set {n ∈ N : ξn(K) > 0} is unbounded, because otherwise (7.15) holds
trivially. Then it follows from the definition of {Σn}n∈N, {Ωn}n∈N, and {Ωn(xn)}n∈N that for each
n0 ∈ N there exists an integer n ⩾ n0 and a point x ∈ S2 such that Snφ⃗(x) ⩾ nα⃗.

We first show that there exists an ergodic measure µ0 ∈ M(S2, f) such that
∫
φ⃗dµ0 ⩾ α⃗−ε/4. Let

nf ∈ N be the constant from Definition 3.20, which depends only on f and C. Then by Proposition 3.8
and Lemma 7.6 (i), for each n ∈ N0 and each Xn ∈ Xn(f, C), there exists a fixed point of fn+nf in
inte(Xn). By Lemma 6.1, there exists a sufficiently large n0 ∈ N such that for each integer n ⩾ n0,

nf (∥α⃗∥+ ∥φ⃗∥) +Dn(φ⃗)

n+ nf
⩽ ε

4
.

Then by the argument in the beginning of the proof, there exists an integer n ⩾ n0 and a point
x ∈ S2 such that Snφ⃗(x) ⩾ nα⃗. We pick an n-tile Xn ∈ Xn(f, C) such that x ∈ Xn. Thus there
exists a fixed point p ∈ Xn of fn+nf . Noting that Snφ⃗(p) ⩾ Snφ⃗(x)−Dn(φ⃗), we have

Sn+nf φ⃗(p) ⩾ Snφ⃗(p)− nf∥φ⃗∥ ⩾ Snφ⃗(x)− nf∥φ⃗∥ −Dn(φ⃗)

⩾ nα⃗− nf∥φ⃗∥ −Dn(φ⃗) ⩾ (n+ nf )α⃗− nf∥α⃗∥ − nf∥φ⃗∥ −Dn(φ⃗).

This implies∫
φ⃗dVn+nf (p) =

1

n+ nf
Sn+nf φ⃗(p) ⩾ α⃗−

nf (∥α⃗∥+ ∥φ⃗∥) +Dn(φ⃗)

n+ nf
⩾ α⃗− ε

4
.

Set µ0 := Vn+nf (p). Then µ0 ∈ M(S2, f) is an ergodic measure with
∫
φ⃗dµ0 ⩾ α⃗− ε/4.

Fix an arbitrary 0-edge e0 ∈ E0(f, C). By Lemma 6.4, there exists N ∈ N such that for each
integer n ⩾ N and each c ∈ {b,w}, there exists Pnc ∈ Pn(f, C, e0) such that Pnc ⊆ inte

(
X0

c

)
and

sup
x∈Pnc

∥∥∥∥ 1nSnφ⃗(x)−
∫
φ⃗dµ0

∥∥∥∥ ⩽ ε

4
.

Then for each x ∈ Pnc ,
1

n
Snφ⃗(x) ⩾

∫
φ⃗dµ0 −

ε

4
⩾ α⃗− ε

2
.

This implies that for each integer n ⩾ N and each c ∈ {b,w}, there exists Pnc ∈ Pn(α⃗ − ε/2) such
that Pnc ⊆ inte

(
X0

c

)
. Therefore, it follows from Proposition 7.19 that for each integer n ⩾ N , there

exists a measure µn ∈ M(S2, f) such that

(7.16)
∫
φ⃗dµn ⩾ α⃗− ε

2
− 2Dn(φ⃗)

n
and µϕ(P

n(α⃗− ε/2)) ⩽ C exp(Fϕ(µn)n),

where C = 2Cµϕ exp
(
C1(diamd(S

2))β
)
. Here Cµϕ is the constant from Proposition 3.11 and C1 ⩾ 0

is the constant defined in (3.10) in Lemma 3.9 that depends only on f , C, d, ϕ, and β.
We split the rest of the proof into three cases according to the type of the sequence {ξn}n∈N.
Case 1 (Birkhoff averages): ξn = Σn = (Vn)∗(µϕ) for each n ∈ N (recall (1.1)).
For each integer n ⩾ N , since {x ∈ S2 : Vn(x) ∈ K} ⊆ Pn(α⃗− ε/2), we have

log Σn(K) = log µϕ({x ∈ S2 : Vn(x) ∈ K}) ⩽ logµϕ(P
n(α⃗− 2−1ε)).
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Thus by (7.16) and Lemma 6.1, for each sufficiently large integer n ⩾ N that satisfies 2Dn(φ⃗)/n <
ε/2, we have

1

n
log Σn(K) ⩽ Fϕ(µn) +

logC

n
⩽ sup

{
Fϕ(µ) : µ ∈ P(S2),

∫
φ⃗dµ > α⃗− ε

}
+

logC

n
.

Then by letting n→ +∞, the desired inequality follows.
Case 2 (Periodic points): ξn = Ωn for each n ∈ N (recall (1.2)).
For each n ∈ N and each p ∈ Pern(f), let Xn(p) ∈ Xn(f, C) be an n-tile that contains p. In

particular, if p ∈ Pern(f) satisfies Vn(p) ∈ K, then Xn(p) ⊆ Pn(α⃗) ⊆ Pn(α⃗ − ε/2). By [Li15,
Lemma 6.3], there exists N0 ∈ N such that for each integer n ⩾ N0 and each n-tile Xn ∈ Xn(f, C),
the number of fixed points of fn contained in Xn is at most 1. This implies that for each integer
n ⩾ N0, the map p 7→ Xn(p) from Pern(f) to Xn(f, C) is injective.

Let n ∈ N be arbitrary. Consider p′ ∈ Pern(f)∩Vn, where Vn = Vn(f, C) is the set of n-vertices.
We set Xn(f, C, p′) := {X ∈ Xn(f, C) : p′ ∈ X}. By Remark 3.4, we have Wn

(p′) =
∪
Xn(f, C, p′)

and card(Xn(f, C, p′)) = 2 degfn(p
′), where Wn(p′) is defined in (3.6) and W

n
(p′) is the closure of

Wn(p′). In particular, if p′ ∈ Pern(f) satisfies Vn(p) ∈ K, then W
n
(p′) =

∪
Xn(f, C, p′) ⊆ Pn(α⃗) ⊆

Pn(α⃗− ε/2). Moreover, if n ⩾ N0, then Xn(p) /∈ Xn(f, C, p′) for every p ∈ Pern(f) \Vn(f, C).
We are now ready to establish the desired upper bound. Let {wj}j∈N be an arbitrary sequence

of real-valued functions on S2 with wj(x) ∈
[
1, degfj (x)

]
for each j ∈ N and each x ∈ S2. For each

integer n ⩾ N0, we have∑
p∈Pern(f)
Vn(p)∈K

wn(p)e
Snϕ(p) ⩽

∑
p′∈Pern(f)∩Vn

Vn(p′)∈K

degfn(p
′)eSnϕ(p

′) +
∑

p∈Pern(f)\Vn

Vn(p)∈K

eSnϕ(p)

⩽
∑

p′∈Pern(f)∩Vn

Vn(p′)∈K

∑
Xn∈Xn(f,C,p′)

eSnϕ(X
n) +

∑
p∈Pern(f)\Vn

Vn(p)∈K

eSnϕ(X
n(p))

⩽
∑

Xn⊆Pn(α⃗−ε/2)
Xn∈Xn(f,C)

eSnϕ(X
n),

where we write Snϕ(Xn) := supx∈Xn Snϕ(x) for each n ∈ N and each Xn ∈ Xn(f, C). Then it follows
from Proposition 3.11 and Theorem 3.10 (ii) that for each integer n ⩾ N0,∑

p∈Pern(f)
Vn(p)∈K

wn(p)e
Snϕ(p) ⩽ Cµϕe

nP (f,ϕ)
∑

Xn⊆Pn(α⃗−ε/2)
Xn∈Xn(f,C)

µϕ(X
n) = Cµϕe

nP (f,ϕ)µϕ(P
n(α⃗− ε/2)).

By (7.16) and Lemma 6.1, for each sufficiently large integer n ⩾ max{N0, N} that satisfies 2Dn(φ⃗)/n <
ε/2,

1

n
logµϕ(P

n(α⃗− ε/2)) ⩽ Fϕ(µn) +
logC

n
⩽ sup

{
Fϕ(µ) : µ ∈ P(S2),

∫
φ⃗dµ > α⃗− ε

}
+

logC

n
,

and therefore
1

n
log Ωn(K) ⩽ − 1

n
log

∑
p∈Pern(f)

wn(p) exp(Snϕ(p))

+ sup

{
Fϕ(µ) : µ ∈ P(S2),

∫
φ⃗dµ > α⃗− ε

}
+ P (f, ϕ) +

log(CCµϕ)

n
.

Note that as n → +∞, the first term of the right hand side in the equation above converges to
−P (f, ϕ) by Proposition 7.7. Therefore, by letting n→ +∞, the desired inequality follows.

Case 3 (Iterated preimages): ξn = Ωn(xn) for each n ∈ N (recall (1.3)), where {xn}n∈N is an
arbitrary sequence of points in S2.
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For each n ∈ N and each y ∈ f−n(xn), let Xn(y) ∈ Xn(f, C) be an n-tile that contains y. In
particular, if y ∈ f−n(xn) satisfies Vn(y) ∈ K, then Xn(y) ⊆ Pn(α⃗) ⊆ Pn(α⃗ − ε/2). By Proposi-
tion 3.2 (i), for each n ∈ N and each Xn ∈ Xn(f, C), fn|Xn is a homeomorphism of Xn onto fn(Xn).
This implies that for each integer n ∈ N the map y 7→ Xn(y) from f−n(xn) to Xn(f, C) is injective.

Let {wj}j∈N be an arbitrary sequence of real-valued functions on S2 with wj(x) ∈
[
1, degfj (x)

]
for each j ∈ N and each x ∈ S2. By similar arguments as in Case 2, for each sufficiently large integer
n ⩾ N that satisfies 2Dn(φ⃗)/n < ε/2,

1

n
log

∑
y∈f−n(xn)
Vn(y)∈K

wn(y)e
Snϕ(y) ⩽ sup

{
Fϕ(µ) : µ ∈ P(S2),

∫
φ⃗dµ > α⃗− ε

}
+ P (f, ϕ) +

log(CCµϕ)

n
,

and therefore
1

n
log Ωn(xn)(K) ⩽ − 1

n
log

∑
y∈f−n(xn)

wn(y) exp(Snϕ(y))

+ sup

{
Fϕ(µ) : µ ∈ P(S2),

∫
φ⃗dµ > α⃗− ε

}
+ P (f, ϕ) +

log(CCµϕ)

n
.

Note that as n → +∞, the first term of the right hand side in the equation above converges to
−P (f, ϕ) by Proposition 7.9. Therefore, by letting n→ +∞, the desired inequality follows.

The proof is complete. □

We now prove the general case.

Proof of Proposition 7.20. By Lemma 3.7, we can find a sufficiently high iterate f̂ := fK of f that
has an f̂ -invariant Jordan curve C ⊆ S2 with post f̂ = post f ⊆ C. Then f̂ is also an expanding
Thurston map.

Denote Φ⃗ := SfKφ⃗ and ϕ̂ := SfKϕ. We define F̂
ϕ̂
: P(S2) → [−∞, 0] by

F̂
ϕ̂
(ν) :=

{
hν(f̂) +

∫
ϕ̂ dν − P (f̂ , ϕ̂) if ν ∈ M(S2, f̂);

−∞ if ν ∈ P(S2) \M(S2, f̂).

Recall from Subsection 3.1 that P (f̂ , ϕ̂) = KP (f, ϕ), hµ(f̂) = Khµ(f), and
∫
ϕ̂ dµ = K

∫
ϕdµ for

µ ∈ M(S2, f). Then for each µ ∈ M(S2, f), we have F̂
ϕ̂
(µ) = KFϕ(µ) since M(S2, f) ⊆ M(S2, f̂).

Since Pµϕ(f̂ , ϕ̂) = KPµϕ(f, ϕ) = KP (f, ϕ) = P (f̂ , ϕ̂), it follows from Theorem 3.10 (i) that µϕ is the
unique equilibrium state for f̂ and Φ⃗.

For each δ > 0, let K̂δ ⊆ P(S2) be the closed set defined by

K̂δ :=

{
µ ∈ P(S2) :

∫
Φ⃗ dµ ⩾ Kα⃗−Kδ

}
.

Let ε > 0 be arbitrary. We claim that
(7.17)

sup

{
F̂
ϕ̂
(µ̂) : µ̂ ∈ P(S2),

∫
Φ⃗ dµ̂ > Kα⃗−Kε

}
= K sup

{
Fϕ(µ) : µ ∈ P(S2),

∫
φ⃗dµ > α⃗− ε

}
.

By the definitions of Fϕ and F̂
ϕ̂
, it suffices to show that

sup

{
F̂
ϕ̂
(µ̂) : µ̂ ∈ M(S2, f̂),

∫
Φ⃗ dµ̂ > Kα⃗−Kε

}
= K sup

{
Fϕ(µ) : µ ∈ M(S2, f),

∫
φ⃗dµ > α⃗− ε

}
.

To see this, we consider arbitrary µ̂ ∈ M(S2, f̂) satisfying
∫
Φ⃗ dµ̂ > Kα⃗ − Kε. Define µ :=

1
K

∑K−1
j=0 f j∗ µ̂. Then

∫
φ⃗dµ = 1

K

∫
Φ⃗ dµ̂ > α⃗ − ε and it follows from Lemma 5.2 that µ ∈ M(S2, f)
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and hµ̂(f̂) = Khµ(f). Thus we have F̂
ϕ̂
(µ̂) = KFϕ(µ) and

sup

{
F̂
ϕ̂
(µ̂) : µ̂ ∈ M(S2, f̂),

∫
Φ⃗ dµ̂ > Kα⃗−Kε

}
⩽ K sup

{
Fϕ(µ) : µ ∈ M(S2, f),

∫
φ⃗dµ > α⃗− ε

}
.

The other direction follows immediately from the facts that M(S2, f) ⊆ M(S2, f̂) and KFϕ(µ) =

F̂
ϕ̂
(µ) for each µ ∈ M(S2, f).
We split the proof into three cases according to the type of the sequence {ξn}n∈N.
Case 1 (Birkhoff averages): ξn = Σn = (Vn)∗(µϕ) for each n ∈ N (recall (1.1)).
For each integer k ∈ {0, . . . , K − 1} and each integer m ∈ N that satisfies (∥α⃗∥+ ∥φ⃗∥)/m ⩽ ε/2,

we have{
x ∈ S2 : SfmK−kφ⃗(x) ⩾ (mK − k)α⃗

}
⊆
{
x ∈ S2 : SfmKφ⃗(x) ⩾ (mK − k)α⃗− k∥φ⃗∥

}
⊆
{
x ∈ S2 : SfmKφ⃗(x) ⩾ mKα⃗−K(∥α⃗∥+ ∥φ⃗∥)

}
⊆
{
x ∈ S2 : m−1S f̂mΦ⃗(x) ⩾ Kα⃗−Kε/2

}
.

For each n ∈ N, we can write n = mK − k for some integer k ∈ {0, . . . , K − 1} and m ∈ N. Then
for each sufficiently large n ∈ N, we have

log Σn(K) = log µϕ
({
x ∈ S2 : Sfnφ⃗(x) ⩾ nα⃗

})
⩽ log µ̂

ϕ̂

({
x ∈ S2 : m−1S f̂mΦ⃗(x) ⩾ Kα⃗−Kε/2

})
= log Σ̂m(K̂ε/2) ⩽

n

mK
log Σ̂m(K̂ε/2),

where m = ⌈n/K⌉ and
{
Σ̂j
}
j∈N is defined by replacing f with f̂ and ϕ with ϕ̂ in the definition of

{Σj}j∈N. Since f̂ has an f̂ -invariant Jordan curve C ⊆ S2 with post f̂ ⊆ C, Proposition 7.20 holds
for f̂ . Therefore, by (7.17), we get

lim sup
n→+∞

log Σn(K)

n
⩽ 1

K
lim sup
m→+∞

log Σ̂m(K̂ε/2)

m
⩽ 1

K
sup

{
F̂
ϕ̂
(µ̂) : µ̂ ∈ P(S2),

∫
Φ⃗ dµ̂ > Kα⃗−Kε

}
= sup

{
Fϕ(µ) : µ ∈ P(S2),

∫
φ⃗dµ > α⃗− ε

}
.

Case 2 (Periodic points): ξn = Ωn for each n ∈ N (recall (1.2)).
Let N := nf ∈ N be the constant from Definition 3.20, which depends only on f and C. For each

n ∈ N and each Xn ∈ Xn(f, C), it follows from Lemma 3.22 that there exists XℓK ∈ XℓK(f, C) such
that XℓK ⊆ inte(Xn), where ℓ := ⌈(n+N)/K⌉. Since f̂(C) ⊆ C, it follows from Propositions 3.2 (iv)
and 3.8 that XℓK ⊆ X0

c for some c ∈ {b,w}. Define m := ℓ+ ⌈N/K⌉. Then by Lemma 7.6 (i), there
exists a fixed point of fmK in inte(XℓK) ⊆ inte(Xn).

For each n ∈ N and each Xn ∈ Xn(f, C), we fix a fixed point of fmK in inte(Xn) and denote it
by p̂(Xn), where m = ⌈(n + N)/K⌉ + ⌈N/K⌉. Then for each n ∈ N, the map Xn 7→ p̂(Xn) from
Xn(f, C) to Perm(f̂) is injective.

For each n ∈ N and each p ∈ Pern(f), let Xn(p) ∈ Xn(f, C) be an n-tile that contains p. By [Li15,
Lemma 6.3], there exists N0 ∈ N such that for each integer n ⩾ N0 and each n-tile Xn ∈ Xn(f, C), the
number of fixed points of fn contained in Xn is at most 1. This implies that for each integer n ⩾ N0,
the map p 7→ Xn(p) from Pern(f) to Xn(f, C) is injective. Therefore, for each integer n ⩾ N0, the
map p → p̂(Xn(p)) from Pern(f) to Perm(f̂) is injective, where m = ⌈(n + N)/K⌉ + ⌈N/K⌉ and
p̂(Xn(p)) ∈ inte(Xn(p)).

We claim that there exists n0 ∈ N such that for each integer n ⩾ n0, each p ∈ Pern(f) with
Vn(p) ∈ K, and each Xn ∈ Xn(f, C) with p ∈ Xn, it follows that V̂m(p̂(Xn)) ∈ K̂ε/2, where m =

⌈(n + N)/K⌉ + ⌈N/K⌉ and V̂ℓ(x) := 1
ℓ

∑ℓ−1
i=0 δf̂ i(x) for each ℓ ∈ N and each x ∈ S2. Indeed, by

Lemma 6.1, there exists a sufficiently large n0 ∈ N such that for each integer n ⩾ n0,
Dn(φ⃗) + 2(K +N)(∥α⃗∥+ ∥φ⃗∥) ⩽ nε/2.
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Since Xn contains p and p̂(Xn), we have Sfnφ⃗(p̂(Xn)) ⩾ Sfnφ⃗(p)−Dn(φ⃗). Set m := ⌈(n+N)/K⌉+
⌈N/K⌉. Note that 0 ⩽ mK − n ⩽ 2(N +K) and Vn(p) ∈ K means that Sfnφ⃗(p) ⩾ nα⃗. Therefore,

S f̂mΦ⃗(p̂(X
n)) = SfmKφ⃗(p̂(X

n)) ⩾ Sfnφ⃗(p̂(X
n))− 2(K +N)∥φ⃗∥

⩾ Sfnφ⃗(p̂)−Dn(φ⃗)− 2(K +N)∥φ⃗∥
⩾ nα⃗−Dn(φ⃗)− 2(K +N)∥φ⃗∥
⩾ mKα⃗−Dn(φ⃗)− 2(K +N)(∥α⃗∥+ ∥φ⃗∥)
⩾ mKα⃗− nε/2

⩾ mKα⃗−mKε/2.

This implies Vm(p̂(Xn)) ∈ K̂ε/2.
Let n ∈ N be arbitrary. Consider p′ ∈ Pern(f)∩Vn, where Vn = Vn(f, C) is the set of n-vertices.

We set Xn(f, C, p′) := {X ∈ Xn(f, C) : p′ ∈ X}. By Remark 3.4, we have Wn
(p′) =

∪
Xn(f, C, p′)

and card(Xn(f, C, p′)) = 2 degfn(p
′), where Wn(p′) is defined in (3.6) and W

n
(p′) is the closure of

Wn(p′). Note that if n ⩾ N0, then Xn(p) /∈ Xn(f, C, p′) for every p ∈ Pern(f) \Vn(f, C).
We are now ready to establish the desired upper bound. Let {wj}j∈N be an arbitrary sequence of

real-valued functions on S2 with wj(x) ∈
[
1,degfj (x)

]
for each j ∈ N and each x ∈ S2.

For each integer n ∈ N, we set m := ⌈(n+N)/K⌉+ ⌈N/K⌉. Note that 0 ⩽ mK − n ⩽ 2(N +K).
By the arguments above, for each integer n ⩾ max{N0, n0}, we have

∑
p∈Pern(f)
Vn(p)∈K

wn(p) exp
(
Sfnϕ(p)

)
⩽

∑
p′∈Pern(f)∩Vn

Vn(p′)∈K

degfn(p
′) exp

(
Sfnϕ(p

′)
)
+

∑
p∈Pern(f)\Vn

Vn(p)∈K

exp
(
Sfnϕ(p)

)

⩽
∑

p′∈Pern(f)∩Vn

Vn(p′)∈K

∑
Xn∈Xn(f,C,p′)

eDn(ϕ)+S
f
nϕ(p̂(X

n)) +
∑

p∈Pern(f)\Vn

Vn(p)∈K

eDn(ϕ)+S
f
nϕ(p̂(X

n(p)))

⩽ eDn(ϕ)
∑

p̂∈Perm(f̂)

V̂m(p̂)∈K̂ε/2

exp
(
Sfnϕ(p̂)

)

⩽ eDn(ϕ)e2(N+K)∥ϕ∥∞
∑

p̂∈Perm(f̂)

V̂m(p̂)∈K̂ε/2

exp
(
S f̂mϕ̂(p̂)

)
.

Then by Lemma 3.9,

∑
p∈Pern(f)
Vn(p)∈K

wn(p) exp
(
Sfnϕ(p)

)
⩽ eC

∑
p̂∈Perm(f̂)

V̂m(p̂)∈K̂ε/2

exp
(
S f̂mϕ̂(p̂)

)
,
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where C := 2(N + K)∥ϕ∥∞ + C1(diamd(S
2))β and C1 ⩾ 0 is the constant defined in (3.10) in

Lemma 3.9 that depends only on f , C, d, ϕ, and β. Thus by (1.2), we have

log Ωn(K) = log
∑

p∈Pern(f)
Vn(p)∈K

wn(p) exp
(
Sfnϕ(p)

)
− log

∑
p′∈Pern(f)

wn(p
′) exp

(
Sfnϕ(p

′)
)

⩽ log
∑

p̂∈Perm(f̂)

V̂m(p̂)∈K̂ε/2

exp
(
S f̂mϕ̂(p̂)

)
− log

∑
p′∈Pern(f)

wn(p
′) exp

(
Sfnϕ(p

′)
)
+ C

= log Ω̂m(K̂ε/2) + log
∑

p̂′∈Perm(f̂)

exp
(
S f̂mϕ̂(p̂

′)
)
− log

∑
p′∈Pern(f)

wn(p
′) exp

(
Sfnϕ(p

′)
)
+ C,

where
{
Ω̂j
}
j∈N is defined by setting wj(x) = 1 for each j ∈ N and each x ∈ S2 and replacing f with

f̂ and ϕ with ϕ̂ in the definition of {Ωj}j∈N (recall (1.2)). Since f̂ has an f̂ -invariant Jordan curve
C ⊆ S2 with post f̂ ⊆ C, Proposition 7.20 holds for f̂ . Therefore, it follows from Proposition 7.7 and
(7.17) that

lim sup
n→+∞

1

n
log Ωn(K) ⩽ 1

K
lim sup
m→+∞

1

m
log Ω̂m(K̂ε/2) +

1

K
P (f̂ , ϕ̂)− P (f, ϕ)

⩽ 1

K
sup

{
F̂
ϕ̂
(µ̂) : µ̂ ∈ P(S2),

∫
Φ⃗ dµ̂ > Kα⃗−Kε

}
= sup

{
Fϕ(µ) : µ ∈ P(S2),

∫
φ⃗dµ > α⃗− ε

}
.

Case 3 (Iterated preimages): ξn = Ωn(xn) for each n ∈ N (recall (1.3)), where {xn}n∈N is an
arbitrary sequence of points in S2.

We fix a point x0 ∈ S2.
Let N := nf ∈ N be the constant from Definition 3.20, which depends only on f and C. For each

n ∈ N and each Xn ∈ Xn(f, C), it follows from Lemma 7.6 (ii) that there exists a preimage of x0
under fmK in inte(Xn), where m := ⌈(n+N)/K⌉. We fix a preimage of of x0 under fmK in inte(Xn)

and denote it by ŷ(Xn). Then for each n ∈ N, the map Xn 7→ ŷ(Xn) from Xn(f, C) to f̂−m(x0) is
injective.

For each n ∈ N and each y ∈ f−n(xn), let Xn(y) ∈ Xn(f, C) be an n-tile that contains y. By
Proposition 3.2 (i), for each n ∈ N and each Xn ∈ Xn(f, C), fn|Xn is a homeomorphism of Xn onto
fn(Xn). This implies that for each integer n ∈ N, the map y 7→ ŷ(Xn(y)) from f−n(xn) to f̂−m(x0)
is injective, where m = ⌈(n+N)/K⌉ and ŷ(Xn(y)) ∈ inte(Xn(y)).

By similar arguments as in Case 2, there exists n0 ∈ N such that for each integer n ⩾ n0, each
y ∈ f−n(xn) with Vn(y) ∈ K, and each Xn ∈ Xn(f, C) with y ∈ Xn, it follows that V̂m(ŷ(Xn)) ∈ K̂ε/2,
where m = ⌈(n+N)/K⌉.

Let n ∈ N be arbitrary. Consider y′ ∈ f−n(xn)∩Vn, where Vn = Vn(f, C) is the set of n-vertices.
We set Xn(f, C, y′) := {X ∈ Xn(f, C) : y′ ∈ X}. By Remark 3.4, we have Wn

(y′) =
∪
Xn(f, C, y′)

and card(Xn(f, C, y′)) = 2 degfn(y
′), where Wn(y′) is defined in (3.6) and W

n
(y′) is the closure of

Wn(y′). Note that Xn(y) /∈ Xn(f, C, y′) for every y ∈ f−n(xn) \Vn(f, C).
We now prove the upper bound. The proof is essentially the same as in Case 2, and we retain this

proof for the convenience of the reader.
Let {wj}j∈N be an arbitrary sequence of real-valued functions on S2 with wj(x) ∈

[
1, degfj (x)

]
for each j ∈ N and each x ∈ S2. For each integer n ∈ N, we set m := ⌈(n + N)/K⌉. Note that
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0 ⩽ mK − n ⩽ N +K. By the arguments above, for each integer n ⩾ n0, we have∑
y∈f−n(xn)
Vn(y)∈K

wn(y) exp
(
Sfnϕ(y)

)

⩽
∑

y′∈f−n(xn)∩Vn

Vn(y′)∈K

wn(y
′) exp

(
Sfnϕ(y

′)
)
+

∑
y∈f−n(xn)\Vn

Vn(y)∈K

exp
(
Sfnϕ(y)

)

⩽
∑

y′∈f−n(xn)∩Vn

Vn(y′)∈K

∑
Xn∈Xn(f,C,y′)

eDn(ϕ)+S
f
nϕ(ŷ(X

n)) +
∑

y∈f−n(xn)\Vn

Vn(y)∈K

eDn(ϕ)+S
f
nϕ(ŷ(X

n(y)))

⩽ eDn(ϕ)
∑

ŷ∈f̂−m(x0)

V̂m(ŷ)∈K̂ε/2

exp
(
Sfnϕ(ŷ)

)

⩽ eDn(ϕ)e2(N+K)∥ϕ∥∞
∑

ŷ∈f̂−m(x0)

V̂m(ŷ)∈K̂ε/2

exp
(
S f̂mϕ̂(ŷ)

)
.

Then by Lemma 3.9, ∑
y∈f−n(xn)
Vn(y)∈K

wn(y) exp
(
Sfnϕ(y)

)
⩽ eC

∑
ŷ∈f̂−m(x0)

V̂m(ŷ)∈K̂ε/2

exp
(
S f̂mϕ̂(ŷ)

)
,

where the constant C is the same as in Case 2. Thus by (1.3), we have

log Ωn(xn)(K)

= log
∑

y∈f−n(xn)
Vn(y)∈K

wn(y) exp
(
Sfnϕ(y)

)
− log

∑
y′∈f−n(xn)

wn(y
′) exp

(
Sfnϕ(y

′)
)

⩽ log
∑

ŷ∈f̂−m(x0)

V̂m(ŷ)∈K̂ε/2

exp
(
S f̂mϕ̂(ŷ)

)
− log

∑
y′∈f−n(xn)

wn(y
′) exp

(
Sfnϕ(y

′)
)
+ C

= log Ω̂m(x0)(K̂ε/2) + log
∑

ŷ′∈f̂−m(x0)

exp
(
S f̂mϕ̂(ŷ

′)
)
− log

∑
y′∈f−n(xn)

wn(y
′) exp

(
Sfnϕ(y

′)
)
+ C,

where
{
Ω̂j(x0)

}
j∈N is defined by setting wj = 1S2 and xj = x0 for each j ∈ N and replacing f with f̂

and ϕ with ϕ̂ in the definition of {Ωj(xj)}j∈N (recall (1.3)). Since f̂ has an f̂ -invariant Jordan curve
C ⊆ S2 with post f̂ ⊆ C, Proposition 7.20 holds for f̂ . Therefore, it follows from Proposition 7.9 and
(7.17) that

lim sup
n→+∞

1

n
log Ωn(xn)(K) ⩽ 1

K
lim sup
m→+∞

1

m
log Ω̂m(x0)(K̂ε/2) +

1

K
P (f̂ , ϕ̂)− P (f, ϕ)

⩽ 1

K
sup

{
F̂
ϕ̂
(µ̂) : µ̂ ∈ P(S2),

∫
Φ⃗ dµ̂ > Kα⃗−Kε

}
= sup

{
Fϕ(µ) : µ ∈ P(S2),

∫
φ⃗dµ > α⃗− ε

}
.

The proof is complete. □
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7.5.3. End of proof of the upper bound.

Proof of Proposition 7.16. Let K be a closed subset of P(S2). Let G ⊆ P(S2) be an open set
containing K. Since P(S2) is metrizable and compact in the weak∗-topology (see for example,
[Wal82, Theorems 6.4 and 6.5]) and K is compact, we can choose ε > 0 and finitely many closed sets
K1, . . . , Ks of the form Kj =

{
µ ∈ P(S2) :

∫
φ⃗j dµ ⩾ α⃗j

}
with ℓj ∈ N, φ⃗j ∈ C(S2)ℓj , and α⃗j ∈ Rℓj ,

so that K ⊆
∪s
j=1Kj ⊆

∪s
j=1Kj(ε) ⊆ G, where Kj(ε) :=

{
µ ∈ P(S2) :

∫
φ⃗j dµ > α⃗j − ε

}
. For each

j ∈ {1, . . . , s}, it follows from Proposition 7.20 that

lim sup
n→+∞

1

n
log ξn(Kj) ⩽ sup

Kj(ε)
Fϕ.

for each sequence {ξn}n∈N ∈ {{Σn}n∈N, {Ωn}n∈N, {Ωn(xn)}n∈N}. Hence,

lim sup
n→+∞

log ξn(K)

n
⩽ lim sup

n→+∞

1

n
log ξn

( s∪
j=1

Kj

)
⩽ max

1⩽j⩽s
lim sup
n→+∞

log ξn(Kj)

n
⩽ max

1⩽j⩽s
sup
Kj(ε)

Fϕ ⩽ sup
G
Fϕ.

Since G is an arbitrary open set containing K, it follows from Remark 1.4 that

lim sup
n→+∞

1

n
log ξn(K) ⩽ inf

G⊇K
sup
G
Fϕ = inf

G⊇K
sup
G

(−Iϕ) = − inf
K
Iϕ,

where the last equality is due to the lower semi-continuity of Iϕ. □

7.6. Proof of large deviation principles. In this subsection, we finish the proof of Theorem 1.3
and its corollaries, Corollaries 1.5 and 1.6.

We record the following well-known lemma, sometimes known as the Portmanteau Theorem, and
refer the reader to [Bil13, Theorem 2.1] for a proof.

Lemma 7.21. Let (X, d) be a compact metric space, and µ and µi, for i ∈ N, be Borel probability
measures on X. Then the following statements are equivalent:

(i) µi
w∗
−→ µ as i→ +∞;

(ii) lim sup
i→+∞

µi(E) ⩽ µ(E) for each closed set E ⊆ X;

(iii) lim inf
i→+∞

µi(G) ⩾ µ(G) for each open set G ⊆ X;

(iv) lim
i→+∞

µi(B) ⩽ µ(B) for each Borel set B ⊆ X with µ(∂B) = 0.

Proof of Theorem 1.3. We fix arbitrary sequence {ξn}n∈N ∈
{
{Σn}n∈N, {Ωn}n∈N, {Ωn(xn)}n∈N

}
.

By Propositions 7.10 and 7.16, {ξn}n∈N satisfies a large deviation principle with the rate function
Iϕ as defined in (1.4).

By Theorem 7.5, µϕ is the unique minimizer of the rate function Iϕ.
To prove that {ξn}n∈N converges to δµϕ in the weak∗ topology, by Lemma 7.21 (i) and (ii), it

suffices to show that lim supn→+∞ ξn(K) ⩽ 0 for each closed set K ⊆ P(S2)\{µϕ}. Let K be a closed
set in P(S2) with µϕ /∈ K. Indeed, since Iϕ is lower semi-continuous, non-negative, and it vanishes
precisely on {µϕ} by Theorem 7.5, the infimum of Iϕ on K is attained at some point of K, and thus
infK Iϕ > 0. Therefore, it follows immediately from the large deviation upper bounds that

lim sup
n→+∞

1

n
log ξn(K) ⩽ − inf

K
Iϕ < 0

and limn→+∞ ξn(K) = 0.
To prove the last statement of the theorem, let G ⊆ P(S2) be a convex and open set containing

an invariant measure µ′. Since the rate function Iϕ is lower semi-continuous, and since it takes finite
values precisely on the compact set M(S2, f) by (1.4), there exists µ ∈ G ∩ M(S2, f) such that
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Iϕ(µ) = infG Iϕ. For each t ∈ (0, 1), put µt := (1− t)µ+ tµ′, and note that µt ∈ M(S2, f) and µt ∈ G
(see for example, [Sch71, 1.1, p. 38]). Since Iϕ is convex (recall Remark 1.4), we have

inf
G
Iϕ ⩽ lim inf

t→0
Iϕ(µt) ⩽ Iϕ(µ) = inf

G
Iϕ.

This shows that infG Iϕ = infG Iϕ. Hence, G is a Iϕ-continuity set and the last assertion of the
theorem follows immediately from (7.3) in Subsection 7.1.

The proof is complete. □

We now prove the corollaries of Theorem 1.3, as stated in Corollaries 1.5 and 1.6.

Proof of Corollary 1.5. Fix µ ∈ M(S2, f) and a convex local basis Gµ at µ. We show that (1.7) in
Corollary 1.5 holds. Since the rate function Iϕ is lower semi-continuous (recall Remark 1.4), we get

−Iϕ(µ) = inf
G∈Gµ

sup
G

(−Iϕ) = inf
G∈Gµ

(
− inf

G
Iϕ
)
.

Then it follows from (1.6) in Theorem 1.3 that

−Iϕ(µ) = inf
G∈Gµ

{
lim

n→+∞

1

n
logµϕ({x ∈ S2 : Vn(x) ∈ G})

}
= inf

G∈Gµ

{
lim

n→+∞

1

n
log

∑
p∈Pern(f),Vn(p)∈G

wn(p) exp(Snϕ(p))

Zn(ϕ)

}

= inf
G∈Gµ

{
lim

n→+∞

1

n
log

∑
y∈f−n(xn),Vn(y)∈G

wn(y) exp(Snϕ(y))

Z ′
n(ϕ)

}
,

where we write Zn(ϕ) :=
∑

x∈Pern(f)wn(x) exp(Snϕ(x)) and Z ′
n(ϕ) :=

∑
y∈f−n(xn)wn(y) exp(Snϕ(y)).

Note that by Propositions 7.7 and 7.9 we have P (f, ϕ) = limn→+∞
1
n logZn(ϕ) = limn→+∞

1
n logZ

′
n(ϕ).

Thus (1.7) holds. □

Proof of Corollary 1.6. The first assertion follows immediately from Theorems 1.3 and 7.1.
To establish (1.9), we consider an arbitrary interval K ⊆ R that intersects (cψ, dψ). Note that the

rate function J defined by (1.8) is bounded on [cψ, dψ] and constantly equal to +∞ on R \ [cψ, dψ].
Furthermore, it follows from the convexity of Iϕ that J is convex on R, and therefore continuous on
(cψ, dψ). This implies that inf int(K) J = infK J since K ∩ (cψ, dψ) ̸= ∅. Thus (1.9) follows from (7.1)
and (7.2).

Note that (1.10) follows immediately from the definitions of Iϕ and Fϕ (see (1.4) and (1.5)). We
now assume that ψ is Hölder continuous with respect to the visual metric d. Consider arbitrary
α ∈ (cψ, dψ) and ε > 0. To show that J(α) = J̃(α), we define Gε :=

∪
t∈(α−ε,α+ε)K(t), where

K(t) :=

{
ν ∈ P(S2) :

∫
ψ dν = t

}
.

Then for each µ ∈ K(α), the open set Gε ⊆ P(S2) contains µ, and it follows from (1.4) that

Iϕ(µ) = − inf
G∋µ

sup
G
Fϕ = sup

G∋µ
inf
G
(−Fϕ) ⩾ inf

Gε
(−Fϕ) = inf

t∈(α−ε,α+ε)
inf
K(t)

(−Fϕ) = inf
t∈(α−ε,α+ε)

J̃(t).

Mimicking the proof of [LSZ25, Proposition 7.1 (iii)], we can show that the function J̃ defined in (1.10)
is continuous on (cψ, dψ) (although [LSZ25, Proposition 7.1 (iii)] additionally assumes that ψ = ϕ,
the proof for the general case is verbatim the same). This implies that inft∈(α−ε,α+ε) J̃(t) → J̃(α) as
ε→ 0. Thus we conclude that

J(α) = inf
µ∈K(α)

Iϕ(µ) ⩾ J̃(α) ⩾ J(α).

This completes the proof. □
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7.7. Equidistribution with respect to the equilibrium state. We finish this section with an
equidistribution result, as a consequence of level-2 large deviation principles.

Proof of Theorem 1.7. Recall that Vn(x) = 1
n

∑n−1
i=0 δf i(x) for x ∈ S2 and n ∈ N as defined in (1.1).

For each n ∈ N and each open set G ⊆ P(S2), we write

Z+
n (G) :=

∑
y∈f−n(xn),Vn(y)∈G

wn(y)e
Snϕ(y) and Z−

n (G) :=
∑

y∈f−n(xn),Vn(y)/∈G

wn(y)e
Snϕ(y).

Let Gµϕ be a convex local basis of P(S2) at µϕ. We fix an arbitrary convex open set G ∈ Gµϕ .
Recall that µϕ is the unique minimizer of the rate function Iϕ by Theorem 7.5. Then it follows

from Corollary 1.5 that for each µ ∈ P(S2) \ {µϕ}, there exist numbers aµ < P (f, ϕ) and Nµ ∈ N
and an open neighborhood Gµ ⊆ P(S2) \ {µϕ} containing µ such that for each n ⩾ Nµ,
(7.18) Z+

n (Gµ) ⩽ exp(naµ).

Since P(S2) is compact in the weak∗ topology by Alaoglu’s theorem, so is P(S2) \ G. Thus there
exists a finite set {µi : i ∈ I} ⊆ P(S2) \ G (where I is a finite index set) such that

(7.19) P(S2) \ G ⊆
∪
i∈I

Gµi .

Set a := max{aµi : i ∈ I}. Note that a < P (f, ϕ). Applying Corollary 1.5 with µ = µϕ and noting
that Iϕ(µϕ) = 0 (recall (1.4) and (1.5) in Theorem 1.3), we get

(7.20) P (f, ϕ) ⩽ lim
n→+∞

1

n
logZ+

n (G).

Combining (7.20) with Proposition 7.9, we get that the equality holds in (7.20). So there exist
numbers b ∈ (a, P (f, ϕ)) and N ⩾ max{Nµi : i ∈ I} such that for each integer n ⩾ N ,
(7.21) Z+

n (G) ⩾ exp(nb).

We claim that every subsequential limit of {νn}n∈N in the weak∗ topology lies in the closure G of
G. Assuming that the claim holds, then since G ∈ Gµϕ is arbitrary, we get that any subsequential
limit of {νn}n∈N in the weak∗ topology is µϕ, i.e., νn

w∗
−→ µϕ as n→ +∞.

We now prove the claim. We first observe that for each n ∈ N,

νn =
∑

y∈f−n(xn)

wn(y) exp(Snϕ(y))

Z+
n (G) + Z−

n (G)
Vn(y)

=
Z+
n (G)

Z+
n (G) + Z−

n (G)
ν ′n +

∑
y∈f−n(xn),Vn(y)/∈G

wn(y) exp(Snϕ(y))

Z+
n (G) + Z−

n (G)
Vn(y),

where
ν ′n :=

∑
y∈f−n(xn),Vn(y)∈G

wn(y) exp(Snϕ(y))

Z+
n (G)

Vn(y).

Note that since a < b, it follows from (7.19), (7.18), and (7.21) that

0 ⩽ lim
n→+∞

Z−
n (G)

Z+
n (G)

⩽ lim
n→+∞

∑
i∈I Z

+
n (Gµ)

Z+
n (G)

⩽ lim
n→+∞

card(I) exp(na)

exp(nb)
= 0.

So limn→+∞
Z+
n (G)

Z+
n (G)+Z−

n (G) = 1, and that the total variation∥∥∥∥ ∑
y∈f−n(xn),Vn(y)/∈G

wn(y) exp(Snϕ(y))

Z+
n (G) + Z−

n (G)
Vn(y)

∥∥∥∥
⩽

∑
y∈f−n(xn),Vn(y)/∈G

wn(y) exp(Snϕ(y))∥Vn(y)∥

Z+
n (G) + Z−

n (G)
⩽ Z−

n (G)
Z+
n (G) + Z−

n (G)
−→ 0
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as n → +∞. Thus a measure is a subsequential limit of {νn}n∈N if and only if it is a subsequential
limit of {ν ′n}n∈N. Note that for each n ∈ N, ν ′n is a convex combination of measures in the convex
set G, so ν ′n ∈ G. Hence each subsequential limit of {νn}n∈N lies in the closure G of G. The proof of
the claim is complete now.

By similar arguments as in the proof of the convergence of {νn}n∈N above, with Proposition 7.9
replaced by Proposition 7.7, we get that µn

w∗
−→ µϕ as n→ +∞. □
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